File size: 29,181 Bytes
8dadc91
 
 
 
 
 
 
93c51f9
8dadc91
cab221e
 
93c51f9
cab221e
 
01afcca
 
b10473a
5b66564
 
 
 
8dadc91
cab221e
 
8dadc91
cab221e
 
01afcca
1924cb2
7431289
cab221e
8dadc91
 
 
 
 
93c51f9
 
8dadc91
 
93c51f9
8dadc91
 
 
 
 
cab221e
 
 
8dadc91
 
 
 
 
 
 
cab221e
 
8dadc91
 
cab221e
93c51f9
cab221e
8dadc91
 
 
 
 
 
 
 
cab221e
 
 
8dadc91
cab221e
 
 
 
8dadc91
cab221e
93c51f9
 
8dadc91
93c51f9
 
 
cab221e
5b66564
 
cab221e
 
 
 
5b66564
 
d93b2e5
cab221e
 
c51456e
5b66564
 
 
c51456e
5b66564
cab221e
c51456e
cab221e
 
 
 
 
 
d93b2e5
cab221e
93c51f9
cab221e
 
 
93c51f9
8dadc91
93c51f9
 
 
d93b2e5
93c51f9
 
 
 
 
 
01afcca
d93b2e5
01afcca
d93b2e5
01afcca
 
 
 
 
 
 
 
d93b2e5
 
 
 
 
 
 
 
 
 
 
 
01afcca
 
 
 
 
 
d93b2e5
01afcca
 
 
 
 
d93b2e5
01afcca
 
d93b2e5
01afcca
d93b2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93c51f9
d93b2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93c51f9
d93b2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93c51f9
d93b2e5
 
 
 
 
 
 
93c51f9
d93b2e5
 
cab221e
8dadc91
 
 
 
93c51f9
8dadc91
93c51f9
8dadc91
 
cab221e
8dadc91
93c51f9
8dadc91
 
 
93c51f9
8dadc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a67e51
 
 
 
8dadc91
 
 
 
 
 
 
 
 
 
 
 
 
1a67e51
8dadc91
eea9674
8dadc91
 
 
93c51f9
cab221e
8dadc91
 
 
 
 
 
 
 
 
 
 
185c276
8dadc91
 
 
 
 
 
 
 
185c276
 
8dadc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a67e51
 
 
 
 
 
 
 
 
 
 
 
8dadc91
1a67e51
 
 
 
 
 
 
 
5548e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a67e51
 
 
 
 
 
 
8dadc91
 
 
 
cab221e
 
 
 
 
 
 
 
 
 
 
8dadc91
 
 
 
 
cab221e
 
8dadc91
cab221e
8dadc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab221e
8dadc91
 
 
 
 
 
 
cab221e
8dadc91
 
 
 
 
 
cab221e
8dadc91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea9674
8dadc91
1a67e51
 
5548e19
1a67e51
 
8dadc91
eea9674
1a67e51
 
 
eea9674
8dadc91
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import streamlit as st
import chromadb
import logging
import sys
import json
import os
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, hf_hub_download
import numpy as np
import time
from tqdm import tqdm
from datasets import load_dataset
import pandas as pd
from sentence_transformers import SentenceTransformer
import tempfile # Added for temporary directory
import chromadb.config # Added for Settings

# --- Page Config (MUST BE FIRST Streamlit call) ---
st.set_page_config(layout="wide")
# ---

# --- Configuration ---
COLLECTION_NAME = "libguides_content"
LOCAL_EMBEDDING_MODEL = 'BAAI/bge-m3' # Local model for QUERY embedding
HF_GENERATION_MODEL = "google/gemma-3-27b-it" # HF model for generation
HF_DATASET_ID = "Zwounds/Libguides_Embeddings" # Your HF Dataset ID
PARQUET_FILENAME = "libguides_embeddings.parquet" # Filename within the dataset
ADD_BATCH_SIZE = 500 # Batch size for adding to Chroma
TOP_K = 20
INITIAL_N_RESULTS = 100
MAX_NEW_TOKENS = 512
# ---

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stderr)

# --- Cached Resource Loading ---

@st.cache_resource
def initialize_hf_client():
    """Initializes and returns the HF Inference Client for generation."""
    generation_client_instance = None
    try:
        load_dotenv()
        HF_TOKEN = os.getenv('HF_TOKEN') or os.getenv('HUGGING_FACE_HUB_TOKEN')
        if not HF_TOKEN:
            logging.error("HF_TOKEN or HUGGING_FACE_HUB_TOKEN not found.")
            st.error("πŸ”΄ Hugging Face Token not found. Please set it as a Space secret named HF_TOKEN or in the .env file.")
            st.stop()
        else:
            generation_client_instance = InferenceClient(model=HF_GENERATION_MODEL, token=HF_TOKEN)
            logging.info(f"Initialized HF Inference Client for generation ({HF_GENERATION_MODEL}).")
            return generation_client_instance
    except Exception as e:
        logging.exception("Error initializing Hugging Face Inference Client for generation.")
        st.error(f"πŸ”΄ Error initializing Hugging Face Inference Client: {e}")
        st.stop()
    return None

@st.cache_resource
def load_local_embedding_model():
    """Loads and returns the local Sentence Transformer model for query embedding."""
    logging.info(f"Loading local embedding model for queries: {LOCAL_EMBEDDING_MODEL}")
    try:
         import torch
         device = 'cuda' if torch.cuda.is_available() else 'cpu'
         logging.info(f"Using device: {device}")
    except ImportError:
         device = 'cpu'
         logging.info("Torch not found, using device: cpu")
    try:
        model = SentenceTransformer(LOCAL_EMBEDDING_MODEL, device=device, trust_remote_code=True)
        logging.info("Local embedding model loaded successfully.")
        return model
    except Exception as e:
        st.error(f"Failed to load local embedding model ({LOCAL_EMBEDDING_MODEL}): {e}")
        logging.exception(f"Failed to load local embedding model: {e}")
        st.stop()
    return None

@st.cache_resource
def load_dataset_from_hf():
    """Downloads the dataset parquet file and loads it into a Pandas DataFrame."""
    try:
        logging.info(f"Downloading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
        parquet_path = hf_hub_download(repo_id=HF_DATASET_ID, filename=PARQUET_FILENAME, repo_type='dataset')
        logging.info(f"Downloaded dataset file to: {parquet_path}")

        logging.info(f"Loading Parquet file '{parquet_path}' into Pandas DataFrame...")
        df = pd.read_parquet(parquet_path)
        logging.info(f"Dataset loaded into DataFrame with shape: {df.shape}")

        required_cols = ['id', 'document', 'embedding', 'metadata']
        if not all(col in df.columns for col in required_cols):
            st.error(f"Dataset Parquet file is missing required columns. Found: {df.columns}. Required: {required_cols}")
            logging.error(f"Dataset Parquet file missing required columns. Found: {df.columns}")
            return None

        logging.info("Ensuring embeddings are in list format...")
        if not df.empty and df['embedding'].iloc[0] is not None and (not isinstance(df['embedding'].iloc[0], list) or not isinstance(df['embedding'].iloc[0][0], float)):
             df['embedding'] = df['embedding'].apply(lambda x: list(map(float, x)) if isinstance(x, (np.ndarray, list)) else None)
             logging.info("Converted embeddings to list[float].")
        else:
             logging.info("Embeddings already seem to be in list[float] format or DataFrame is empty.")

        initial_rows = len(df)
        df.dropna(subset=['embedding'], inplace=True)
        if len(df) < initial_rows:
            logging.warning(f"Dropped {initial_rows - len(df)} rows due to invalid embedding format.")

        if df.empty:
            st.error("No valid data loaded from the dataset after processing embeddings.")
            logging.error("DataFrame empty after embedding processing.")
            return None

        return df

    except ImportError as e:
        st.error(f"ImportError: {e}. Required libraries might be missing (datasets, pandas, pyarrow). Check requirements.txt.")
        logging.error(f"ImportError during dataset loading: {e}")
    except Exception as e:
        st.error(f"Failed to load data from dataset: {e}")
        logging.exception(f"An unexpected error occurred during data load: {e}")

    return None

# --- Initialize Clients and Models ---
generation_client = initialize_hf_client()
embedding_model = load_local_embedding_model()
# ---

# --- Setup ChromaDB Collection (using Session State and Temp Dir) ---
def setup_chroma_collection():
    """Loads data from HF, sets up ChromaDB in a temp dir, populates it, and returns the collection."""
    if 'chroma_collection' in st.session_state and st.session_state.chroma_collection is not None:
        # Basic check: see if collection is queryable
        try:
            st.session_state.chroma_collection.peek(1) # Try a lightweight operation
            logging.info("Using existing Chroma collection from session state.")
            return st.session_state.chroma_collection
        except Exception as e:
            logging.warning(f"Error accessing existing collection in session state ({e}), re-initializing.")
            st.session_state.chroma_collection = None # Force re-init

    # Proceed with setup only if essential components are loaded
    if not embedding_model or not generation_client:
        st.error("Cannot setup ChromaDB: Required models/clients failed to initialize.")
        return None

    with st.spinner("Loading and preparing vector database..."):
        df = load_dataset_from_hf()
        if df is None or df.empty:
            st.error("Failed to load embedding data. Cannot initialize vector database.")
            return None

        # Create a temporary directory for this session
        # Note: This directory might be cleaned up automatically depending on the OS/environment
        # In HF Spaces ephemeral storage, it will likely be wiped on restart anyway.
        temp_dir = tempfile.mkdtemp()
        logging.info(f"Created temporary directory for ChromaDB: {temp_dir}")

        try:
            logging.info("Initializing ChromaDB client with temporary storage...")
            settings = chromadb.config.Settings(
                persist_directory=temp_dir,
                anonymized_telemetry=False,
                is_persistent=True # Explicitly set for PersistentClient behavior in temp dir
            )
            # Use the standard Client, but point it to the temp directory
            chroma_client = chromadb.Client(settings=settings)

            # Check if collection exists and delete if it does
            try:
                existing_collections = [col.name for col in chroma_client.list_collections()]
                if COLLECTION_NAME in existing_collections:
                    chroma_client.delete_collection(name=COLLECTION_NAME)
                    logging.info(f"Deleted existing collection: {COLLECTION_NAME}")
            except Exception as delete_e:
                 logging.warning(f"Could not check/delete existing collection (might be okay): {delete_e}")

            logging.info(f"Creating collection: {COLLECTION_NAME}")
            collection_instance = chroma_client.create_collection(
                name=COLLECTION_NAME,
                metadata={"hnsw:space": "cosine"} # No embedding function needed here
            )

            logging.info(f"Adding {len(df)} documents to ChromaDB in batches of {ADD_BATCH_SIZE}...")
            start_time = time.time()
            error_count = 0
            num_batches = (len(df) + ADD_BATCH_SIZE - 1) // ADD_BATCH_SIZE

            for i in range(num_batches):
                start_idx = i * ADD_BATCH_SIZE
                end_idx = start_idx + ADD_BATCH_SIZE
                batch_df = df.iloc[start_idx:end_idx]

                try:
                    # Prepare and clean metadata for the batch
                    metadatas_list_raw = batch_df['metadata'].tolist()
                    cleaned_metadatas = []
                    for item in metadatas_list_raw:
                        cleaned_dict = {}
                        current_meta = item if isinstance(item, dict) else {}
                        if not isinstance(item, dict):
                            try: current_meta = json.loads(item) if isinstance(item, str) else {}
                            except: current_meta = {}

                        if isinstance(current_meta, dict):
                            for key, value in current_meta.items():
                                if value is None: cleaned_dict[key] = ""
                                elif isinstance(value, (str, int, float, bool)): cleaned_dict[key] = value
                                else:
                                    try: cleaned_dict[key] = str(value)
                                    except: pass
                        cleaned_metadatas.append(cleaned_dict)

                    # Add the batch
                    collection_instance.add(
                        ids=batch_df['id'].tolist(),
                        embeddings=batch_df['embedding'].tolist(),
                        documents=batch_df['document'].tolist(),
                        metadatas=cleaned_metadatas
                    )
                except Exception as e:
                    logging.error(f"Error adding batch {i+1}/{num_batches} to Chroma: {e}")
                    error_count += 1

            end_time = time.time()
            logging.info(f"Finished loading data into ChromaDB. Took {end_time - start_time:.2f} seconds.")
            if error_count > 0: logging.warning(f"Encountered errors in {error_count} batches during add.")

            final_count = collection_instance.count()
            logging.info(f"Final document count in Chroma collection: {final_count}")
            if final_count > 0:
                st.session_state.chroma_collection = collection_instance
                st.success("Vector database loaded successfully!")
                return collection_instance
            else:
                st.error("Failed to load documents into the vector database.")
                return None

        except Exception as setup_e:
            st.error(f"Failed to setup ChromaDB: {setup_e}")
            logging.exception(f"Failed to setup ChromaDB: {setup_e}")
            return None

# --- Initialize collection ---
collection = setup_chroma_collection()
# ---

# --- Helper Functions ---
def query_hf_inference(prompt, client_instance=None, model_name=HF_GENERATION_MODEL):
    """Sends the prompt to the HF Inference API using the initialized client."""
    if not client_instance: client_instance = generation_client
    if not client_instance:
         logging.error("HF Inference client not initialized.")
         return "Error: HF Inference client failed to initialize."
    try:
        response_text = client_instance.text_generation(prompt, max_new_tokens=MAX_NEW_TOKENS)
        if not response_text:
             logging.warning(f"Received empty response from HF Inference API ({model_name}).")
             return "Error: Received empty response from generation model."
        return response_text.strip()
    except Exception as e:
        logging.exception(f"Error querying HF Inference API ({model_name}): {e}")
        return f"Error: An unexpected error occurred while generating the answer using {model_name}."

def generate_query_variations(query, llm_func, model_name=HF_GENERATION_MODEL, num_variations=3):
    """Uses LLM (HF Inference API) to generate alternative phrasings."""
    prompt = f"""Given the user query: "{query}"
Generate {num_variations} alternative phrasings or related queries someone might use to find the same information.
Focus on synonyms, different levels of specificity, and related concepts.
Return ONLY the generated queries, each on a new line, without any preamble or numbering.

Example Query: "who is the digital humanities liaison?"
Example Output:
digital scholarship librarian contact
staff directory digital humanities
Steve Zweibel digital humanities role

Example Query: "when are the next graduation dates?"
Example Output:
graduation deadlines academic calendar
dissertation deposit deadline
commencement schedule

User Query: "{query}"
Output:"""
    logging.info(f"Generating query variations for: {query} using {model_name}")
    try:
        response = llm_func(prompt, model_name=model_name)
        if response.startswith("Error:"):
             logging.error(f"Query variation generation failed: {response}")
             return []
        variations = [line.strip() for line in response.split('\n') if line.strip()]
        logging.info(f"Generated variations: {variations}")
        return variations[:num_variations]
    except Exception as e:
        logging.error(f"Failed to generate query variations: {e}")
        return []

def generate_prompt(query, context_chunks):
    """Generates a prompt for the LLM."""
    context_str = "\n\n".join(context_chunks)
    liaison_directory_url = "https://libguides.gc.cuny.edu/directory/subject"
    # Updated system prompt for clarity
    prompt = f"""You are an AI assistant for the CUNY Graduate Center Library (also known as the Mina Rees Library).
Based *only* on the following context extracted from the GC Library's LibGuides, answer the user's question about GC Library resources, services, or policies.
Do not use any prior knowledge. If the context doesn't contain the answer, state that the information wasn't found in the provided LibGuides context.
If your answer identifies a specific librarian or subject liaison, please also include this link to the main subject liaison directory: {liaison_directory_url}

Context:
---
{context_str}
---

Question: {query}

Answer:"""
    return prompt

# --- Streamlit App UI ---
st.title("πŸ“š Ask the CUNY Graduate Center Library (RAG Demo)") # Updated title

# User input (only proceed if collection loaded)
if collection:
    query = st.text_area("Enter your question:", height=100)
else:
    st.error("Application initialization failed: Vector database not loaded.")
    st.stop()

# --- Routing Prompt Definition ---
ROUTING_PROMPT_TEMPLATE = """You are a query routing assistant for a library chatbot. Your task is to classify the user's query into one of the following categories based on its intent:

Categories:
- RAG: The user is asking a general question about library services, policies, staff, or resources described in the library guides.
- HOURS: The user is asking about the library's opening or closing times, today's hours, or general operating hours.
- RESEARCH_QUERY: The user is asking for help starting research, finding databases/articles on a topic, or general research assistance.
- CATALOG_SEARCH: The user is asking if the library has a specific known item (book, journal title, article) or where to find it.
- ILL_REQUEST: The user is asking about Interlibrary Loan, requesting items not held by the library, or checking ILL status.
- ACCOUNT_INFO: The user is asking about their library account, fines, renewals, or logging in.
- TECH_SUPPORT: The user is reporting a *problem* like a broken link, login issue, or error message when trying to access resources.
- EVENTS_CALENDAR: The user is asking about upcoming library events, workshops, or the events calendar.


Analyze the user's query below and determine the most appropriate category. Respond with ONLY the category name (RAG, HOURS, RESEARCH_QUERY, CATALOG_SEARCH, ILL_REQUEST, ACCOUNT_INFO, TECH_SUPPORT, or EVENTS_CALENDAR) and nothing else.

Examples:
Query: "who is the comp lit liaison?"
Response: RAG
Query: "how do I get access to Westlaw?"
Response: RAG
Query: "how do I find articles on sociology?"
Response: RESEARCH_QUERY
Query: "when does the library close today?"
Response: HOURS

User Query: "{user_query}"
Response:"""

# --- Research Query Prompt Definition ---
RESEARCH_QUERY_PROMPT_TEMPLATE = """Based on the following context from the library guides, answer the user's research question.
1. Suggest 2-3 relevant databases or resources mentioned in the context that could help with their topic. If no specific databases are mentioned, suggest general multidisciplinary ones if appropriate based on the context.
2. Recommend contacting a subject librarian for further, more in-depth assistance.
3. Provide this link to the subject liaison directory: https://libguides.gc.cuny.edu/directory/subject

If the context doesn't seem relevant to the question, state that you couldn't find specific database recommendations in the guides but still recommend contacting a librarian using the provided directory link.

Context:
---
{context_str}
---

Question: {query}

Answer:"""
# --- End Prompt Definitions ---


# Only show button and process if collection is loaded
if collection and st.button("Ask"):
    if not query:
        st.warning("Please enter a question.")
    else:
        st.markdown("---")
        # --- LLM Routing Step (Moved Before Spinner) ---
        logging.info(f"Routing query: {query}")
        routing_prompt = ROUTING_PROMPT_TEMPLATE.format(user_query=query)
        try:
            route_decision = query_hf_inference(routing_prompt).strip().upper()
            logging.info(f"LLM (HF API) route decision: {route_decision}")
            if route_decision.startswith("ERROR:"):
                 st.error(f"Routing failed: {route_decision}")
                 st.stop()
        except Exception as e:
            logging.error(f"LLM (HF API) routing failed: {e}. Defaulting to RAG.")
            route_decision = "RAG" # Default to RAG on routing failure

        # --- Handle specific routes immediately ---
        if route_decision == "HOURS":
            st.info("You can find the current library hours here: [https://gc-cuny.libcal.com/hours](https://gc-cuny.libcal.com/hours)")
            st.stop()
        elif route_decision == "EVENTS_CALENDAR":
            events_url = "https://gc-cuny.libcal.com/calendar?cid=15537&t=d&d=0000-00-00&cal=15537&inc=0"
            st.info(f"You can find information about upcoming library events and workshops on the calendar here: [{events_url}]({events_url})")
            st.stop()
        # Add other direct routes here
        elif route_decision == "CATALOG_SEARCH":
            catalog_url = "https://cuny-gc.primo.exlibrisgroup.com/discovery/search?vid=01CUNY_GC:CUNY_GC"
            st.info(f"To check for specific books, journals, or articles, please search the library catalog directly here: [{catalog_url}]({catalog_url})")
            st.stop() # Stop execution for this query
        elif route_decision == "ILL_REQUEST":
            ill_url = "https://ezproxy.gc.cuny.edu/login?url=https://gc-cuny.illiad.oclc.org/illiad/illiad.dll"
            st.info(f"For Interlibrary Loan requests or questions, please use the ILL system here: [{ill_url}]({ill_url})")
            st.stop()
        elif route_decision == "ACCOUNT_INFO":
            account_url = "https://cuny-gc.primo.exlibrisgroup.com/discovery/account?vid=01CUNY_GC:CUNY_GC&section=overview"
            st.info(f"To manage your library account (renewals, fines, etc.), please log in here: [{account_url}]({account_url})")
            st.stop()
        elif route_decision == "TECH_SUPPORT":
            support_url = "https://docs.google.com/forms/d/e/1FAIpQLSdF3a-Au-jIYRDN-mxU3MpZSANQJWFx0VEN2if01iRucIXsZA/viewform" # Assuming this is the correct form
            st.info(f"To report a problem with accessing e-resources or other technical issues, please use this form: [{support_url}]({support_url})")
            st.stop()

        # --- Proceed with RAG/Research Query if not handled above ---
        if route_decision in ["RAG", "RESEARCH_QUERY"]: # Only proceed if it's a general or research query
            spinner_text = "Thinking... (RAG)" if route_decision != "RESEARCH_QUERY" else "Thinking... (Research Query)"
            with st.spinner(spinner_text):
                # 1. Generate Query Variations (using HF API)
                logging.info(f"Proceeding with retrieval for query (Route: {route_decision}): {query}")
            query_variations = generate_query_variations(query, query_hf_inference, HF_GENERATION_MODEL)
            all_queries = [query] + query_variations
            logging.info(f"--- DIAGNOSTIC: All queries for search: {all_queries}")

            # 2. Embed Queries Locally
            try:
                logging.info(f"Generating query embeddings locally using {LOCAL_EMBEDDING_MODEL}...")
                query_embeddings = embedding_model.encode(all_queries).tolist()
                logging.info(f"Generated {len(query_embeddings)} query embeddings locally.")
            except Exception as e:
                st.error(f"Failed to embed query using local model: {e}")
                logging.exception(f"Failed to embed query using local model: {e}")
                st.stop()

            # 3. Vector Search (using pre-computed query embeddings)
            vector_results_ids = []
            context_chunks = []
            context_metadata_list = []

            try:
                logging.info(f"Performing vector search for {len(query_embeddings)} embeddings...")
                # Query ChromaDB using the computed query_embeddings
                vector_results = collection.query(
                    query_embeddings=query_embeddings, # Pass embeddings now
                    n_results=INITIAL_N_RESULTS,
                    include=['documents', 'metadatas', 'distances']
                )

                # Process results (Combine results from variations)
                vector_results_best_rank = {}
                retrieved_docs_map = {}
                retrieved_meta_map = {}
                if vector_results and vector_results.get('ids') and any(vector_results['ids']):
                    total_vector_results = 0
                    for i, ids_list in enumerate(vector_results['ids']):
                        if ids_list:
                            total_vector_results += len(ids_list)
                            distances_list = vector_results['distances'][i] if vector_results.get('distances') else [float('inf')] * len(ids_list)
                            docs_list = vector_results['documents'][i] if vector_results.get('documents') else [""] * len(ids_list)
                            metas_list = vector_results['metadatas'][i] if vector_results.get('metadatas') else [{}] * len(ids_list)
                            for rank, doc_id in enumerate(ids_list):
                                distance = distances_list[rank]
                                if doc_id not in vector_results_best_rank or distance < vector_results_best_rank[doc_id]:
                                    vector_results_best_rank[doc_id] = distance
                                    retrieved_docs_map[doc_id] = docs_list[rank]
                                    retrieved_meta_map[doc_id] = metas_list[rank]
                    logging.info(f"Vector search retrieved {total_vector_results} total results, {len(vector_results_best_rank)} unique IDs.")
                else:
                    logging.warning("Vector search returned no results.")

                # Rank unique results by distance
                vector_ranked_ids_for_selection = sorted(vector_results_best_rank.items(), key=lambda item: item[1])
                vector_results_ids_list = [doc_id for doc_id, distance in vector_ranked_ids_for_selection]

                # --- Selection ---
                final_context_ids = []
                seen_texts_for_final = set()
                ids_to_use_for_final_selection = vector_results_ids_list
                logging.info(f"Selecting top {TOP_K} unique results from Vector Search list...")
                for doc_id in ids_to_use_for_final_selection:
                    doc_text = retrieved_docs_map.get(doc_id)
                    if doc_text and doc_text not in seen_texts_for_final:
                        seen_texts_for_final.add(doc_text)
                        final_context_ids.append(doc_id)
                        if len(final_context_ids) >= TOP_K:
                            break
                    elif not doc_text:
                         logging.warning(f"Document text not found in map for ID {doc_id} during final selection.")
                logging.info(f"Selected {len(final_context_ids)} final unique IDs after deduplication.")

                # Get final context chunks and metadata
                log_chunks = []
                for i, doc_id in enumerate(final_context_ids):
                    chunk_text = retrieved_docs_map.get(doc_id)
                    chunk_meta = retrieved_meta_map.get(doc_id)
                    if chunk_text:
                        context_chunks.append(chunk_text)
                        context_metadata_list.append(chunk_meta if chunk_meta else {})
                        log_chunks.append(f"Chunk {i+1} (ID: {doc_id}): '{chunk_text[:70]}...'")
                logging.info(f"Selected {len(context_chunks)} unique context chunks for LLM.")
                if log_chunks:
                    logging.info(f"--- DIAGNOSTIC: Final Context Chunks Sent to LLM:\n" + "\n".join(log_chunks))

            except Exception as e:
                st.error(f"An error occurred during vector search/selection: {e}")
                logging.exception("Vector search/selection failed.")
                context_chunks = []

            # 4. Generate Final Prompt based on Route
            if route_decision == "RESEARCH_QUERY":
                logging.info("Using RESEARCH_QUERY prompt template.")
                final_prompt = RESEARCH_QUERY_PROMPT_TEMPLATE.format(context_str="\n\n".join(context_chunks), query=query)
            else: # Default to standard RAG
                logging.info("Using standard RAG prompt template.")
                final_prompt = generate_prompt(query, context_chunks)

            # 5. Query HF Inference API LLM
            logging.info(f"Sending final prompt to HF Inference API model: {HF_GENERATION_MODEL}...")
            answer = query_hf_inference(final_prompt)
            logging.info(f"Received answer from HF Inference API: {answer[:100]}...")
            if answer.startswith("Error:"):
                 st.error(f"Answer generation failed: {answer}")

        # 6. Display results
        st.subheader("Answer:")
        st.markdown(answer)

        st.markdown("---")
        with st.expander("Retrieved Context"):
            if context_chunks:
                for i, (chunk, metadata) in enumerate(zip(context_chunks, context_metadata_list)):
                    st.markdown(f"**Chunk {i+1}:**")
                    st.text(chunk)
                    source_url = metadata.get('source_url')
                    if source_url:
                        st.markdown(f"Source: [{source_url}]({source_url})")
                    st.markdown("---")
            else:
                st.info("No specific context was retrieved from the guides to answer this question.")

# Add instructions or footer
st.sidebar.header("About This Demo")
st.sidebar.info(
    "This is an experimental RAG demo for the CUNY Graduate Center Library (Mina Rees Library).\n\n"
    "1. Loads pre-computed embeddings from a Hugging Face Dataset.\n"
    "2. Embeds user que ries locally.\n"
    "3. Uses the Hugging Face Inference API for LLM generation.\n"
    "4. Requires a `HUGGING_FACE_HUB_TOKEN` (set as Space secret `HF_TOKEN` or in `.env`)."
)
st.sidebar.header("Configuration Used")
st.sidebar.markdown(f"**Data Source:** HF Dataset (`{HF_DATASET_ID}`)")
st.sidebar.markdown(f"**Query Embedding:** Local (`{LOCAL_EMBEDDING_MODEL}`)")
st.sidebar.markdown(f"**Generation LLM:** HF API (`{HF_GENERATION_MODEL}`)")
st.sidebar.markdown(f"**Vector Store:** ChromaDB (In-Memory)")
st.sidebar.markdown(f"**Retrieval Mode:** Vector Search Only")
st.sidebar.markdown(f"**Final Unique Chunks:** `{TOP_K}` (from initial `{INITIAL_N_RESULTS}` vector search)")