File size: 7,261 Bytes
f75943a
 
 
 
 
 
 
 
 
 
b0f79a7
4121f92
0888538
4121f92
f75943a
 
 
 
 
b0f79a7
f75943a
 
 
b0f79a7
 
 
 
 
 
f75943a
 
 
 
 
b0f79a7
f75943a
 
 
 
b0f79a7
f75943a
 
 
 
 
 
 
 
 
 
 
 
b0f79a7
f75943a
 
 
b0f79a7
f75943a
b0f79a7
f75943a
 
 
 
b0f79a7
0888538
 
 
f75943a
 
0888538
 
 
f75943a
 
 
 
 
 
 
 
b0f79a7
 
 
 
 
 
f75943a
 
 
 
b0f79a7
f75943a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f79a7
f75943a
198da27
f75943a
 
 
b0f79a7
f75943a
 
 
 
 
 
b0f79a7
f75943a
 
 
 
 
 
 
b0f79a7
 
 
 
f75943a
b0f79a7
 
 
 
 
 
 
0888538
b0f79a7
 
198da27
b0f79a7
 
198da27
b0f79a7
 
 
 
198da27
b0f79a7
 
 
 
 
 
 
 
 
 
 
198da27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import sys
import torch
import torch.nn as nn
from datetime import datetime
from torch.nn.utils import clip_grad_norm_
import torch.optim as optim
from torch.utils.data import DataLoader
import json

# إعداد المسارات
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(dir_path, '..'))

from nets.model import Model
from Actor.actor import Actor
from dataloader import VRP_Dataset
from google_solver.google_model import evaluate_google_model

# تحميل الإعدادات
with open('params.json', 'r') as f:
    params = json.load(f)

# حفظ نسخة من الإعدادات
os.makedirs("/data", exist_ok=True)
with open('/data/params_saved.json', 'w') as f:
    json.dump(params, f)

# إعداد المتغيرات
device = params['device']
run_tests = params['run_tests']
save_results = params['save_results']
dataset_path = params['dataset_path']

# حجم البيانات
train_dataset_size = params['train_dataset_size']
validation_dataset_size = params['validation_dataset_size']
baseline_dataset_size = params['baseline_dataset_size']

# خصائص المشكلة
num_nodes = params['num_nodes']
num_depots = params['num_depots']
embedding_size = params['embedding_size']
sample_size = params['sample_size']
gradient_clipping = params['gradient_clipping']
num_neighbors_encoder = params['num_neighbors_encoder']
num_neighbors_action = params['num_neighbors_action']
num_movers = params['num_movers']
learning_rate = params['learning_rate']
batch_size = params['batch_size']
test_batch_size = params['test_batch_size']

# التحميل
validation_dataset = VRP_Dataset(validation_dataset_size, num_nodes, num_depots, dataset_path, device)
baseline_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
if params['overfit_test']:
    train_dataset = baseline_dataset = validation_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)

# تقييم Google OR-Tools
google_scores = evaluate_google_model(validation_dataset)
tot_google_scores = google_scores.sum().item()
input_size = validation_dataset.model_input_length()

# تعريف النماذج
model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
actor = Actor(model=model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
              num_neighbors_action=num_neighbors_action, device=device, normalize=False)
actor.train_mode()

baseline_model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
baseline_actor = Actor(model=baseline_model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
                       num_neighbors_action=num_neighbors_action, device=device, normalize=False)
baseline_actor.greedy_search()
baseline_actor.load_state_dict(actor.state_dict())

nn_actor = Actor(model=None, num_movers=1, num_neighbors_action=1, device=device)
nn_actor.nearest_neighbors()

optimizer = optim.Adam(params=actor.parameters(), lr=learning_rate)

# ملفات الإخراج
train_results_file = "/data/train_results.txt"
test_results_file = "/data/test_results.txt"
model_path = "/data/model_state_dict.pt"
optimizer_path = "/data/optimizer_state_dict.pt"

train_batch_record = 100
validation_record = 100
baseline_record = None

# التدريب
for epoch in range(params['num_epochs']):
    if not params['overfit_test']:
        train_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)

    train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=train_dataset.collate)
    for i, batch in enumerate(train_dataloader):
        with torch.no_grad():
            nn_output = nn_actor(batch)
            tot_nn_cost = nn_output['total_time'].sum().item()

            baseline_actor.greedy_search()
            baseline_cost = baseline_actor(batch)['total_time']

        actor.train_mode()
        actor_output = actor(batch)
        actor_cost, log_probs = actor_output['total_time'], actor_output['log_probs']

        loss = ((actor_cost - baseline_cost).detach() * log_probs).mean()

        optimizer.zero_grad()
        loss.backward()
        if gradient_clipping:
            for group in optimizer.param_groups:
                clip_grad_norm_(group['params'], 1, norm_type=2)
        optimizer.step()

        tot_actor_cost = actor_cost.sum().item()
        tot_baseline_cost = baseline_cost.sum().item()
        actor_nn_ratio = tot_actor_cost / tot_nn_cost
        actor_baseline_ratio = tot_actor_cost / tot_baseline_cost
        train_batch_record = min(train_batch_record, actor_nn_ratio)

        result = f"{epoch}, {i}, {actor_nn_ratio:.4f}, {actor_baseline_ratio:.4f}, {train_batch_record:.4f}"
        print(result)
        if save_results:
            with open(train_results_file, 'a') as f:
                f.write(result + '\n')
        del batch

    # التحقق من الأداء
    if epoch % 5 == 0:
        baseline_dataloader = DataLoader(baseline_dataset, batch_size=batch_size, collate_fn=baseline_dataset.collate)
        tot_cost = []
        for batch in baseline_dataloader:
            with torch.no_grad():
                actor.greedy_search()
                cost = actor(batch)['total_time']
            tot_cost.append(cost)
        tot_cost = torch.cat(tot_cost, dim=0)
        if baseline_record is None or (tot_cost < baseline_record).float().mean().item() > 0.9:
            baseline_record = tot_cost
            baseline_actor.load_state_dict(actor.state_dict())
            print('\nNew baseline record\n')

    # التقييم وحفظ النموذج
    if run_tests:
        b = max(int(batch_size // sample_size**2), 1)
        validation_dataloader = DataLoader(validation_dataset, batch_size=b, collate_fn=validation_dataset.collate)

        tot_cost = 0
        tot_nn_cost = 0
        for batch in validation_dataloader:
            with torch.no_grad():
                actor.beam_search(sample_size)
                actor_output = actor(batch)
                cost = actor_output['total_time']

                nn_output = nn_actor(batch)
                nn_cost = nn_output['total_time']

            tot_cost += cost.sum().item()
            tot_nn_cost += nn_cost.sum().item()

        ratio = tot_cost / tot_nn_cost
        validation_record = min(validation_record, ratio)
        actor_google_ratio = tot_cost / tot_google_scores
        print(f"\nTest results:\nActor/Google: {actor_google_ratio:.4f}, Actor/NN: {ratio:.4f}, Best NN Ratio: {validation_record:.4f}\n")

        if save_results:
            # حفظ دائم
            with open(test_results_file, 'a') as f:
                f.write(f"{epoch}, {actor_google_ratio:.4f}, {ratio:.4f}, {validation_record:.4f}\n")
            torch.save(actor.state_dict(), model_path)
            torch.save(optimizer.state_dict(), optimizer_path)

            # نسخة احتياطية كل 10 epochs
            if epoch % 10 == 0:
                torch.save(actor.state_dict(), f"/data/model_epoch_{epoch}.pt")
                torch.save(optimizer.state_dict(), f"/data/optimizer_epoch_{epoch}.pt")

print("End.")