Spaces:
Sleeping
Sleeping
File size: 8,715 Bytes
3b6960a 2a8f039 3b6960a 0f16575 2a8f039 3b6960a 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 3b6960a 2a8f039 6755db5 3b6960a 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 a94b356 2a8f039 a94b356 2a8f039 a94b356 2a8f039 0f16575 2a8f039 0f16575 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 a94b356 2a8f039 a94b356 2a8f039 3b6960a 2a8f039 6755db5 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 0f16575 2a8f039 3b6960a 2a8f039 6755db5 2a8f039 6755db5 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a a94b356 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 2a8f039 3b6960a 6755db5 3b6960a 2a8f039 3b6960a 6755db5 2a8f039 6755db5 2a8f039 6755db5 3b6960a 2a8f039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import gradio as gr
import spaces
from transformers import pipeline
import torch
import time
# Simple CSS for clean design
simple_css = """
.gradio-container {
max-width: 900px !important;
margin: 0 auto !important;
font-family: 'Arial', sans-serif;
}
.threat-input {
border-radius: 8px !important;
border: 2px solid #e0e0e0 !important;
padding: 15px !important;
font-size: 14px !important;
}
.threat-input:focus {
border-color: #667eea !important;
}
.analyze-btn {
background: #667eea !important;
border: none !important;
border-radius: 8px !important;
padding: 12px 30px !important;
font-size: 16px !important;
font-weight: 600 !important;
color: white !important;
}
.analysis-output {
background: #f8f9fa !important;
border-radius: 8px !important;
border: 1px solid #e0e0e0 !important;
padding: 20px !important;
line-height: 1.6 !important;
}
.status-box {
background: #d4edda !important;
border: 1px solid #c3e6cb !important;
color: #155724 !important;
padding: 10px !important;
border-radius: 6px !important;
margin: 10px 0 !important;
}
"""
# Global model variables
pipe = None
model_status = "🔄 Loading model..."
@spaces.GPU
def load_model():
"""Load the best available model"""
global pipe, model_status
models_to_try = [
"openai/gpt-oss-20b",
"microsoft/DialoGPT-large",
"microsoft/DialoGPT-medium",
"gpt2-large"
]
for model_name in models_to_try:
try:
print(f"🔄 Loading {model_name}...")
pipe = pipeline(
"text-generation",
model=model_name,
torch_dtype="auto",
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
# Test the model
pipe("Test", max_new_tokens=5, do_sample=False)
model_status = f"✅ {model_name} ready"
print(model_status)
return model_status
except Exception as e:
print(f"❌ {model_name} failed: {str(e)[:50]}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
continue
model_status = "⚠️ Using fallback mode"
return model_status
@spaces.GPU
def analyze_threat(threat_description, analyst_level):
"""Simple threat analysis"""
if not threat_description.strip():
return "Please enter a threat description first.", ""
start_time = time.time()
# Create simple prompt
prompt = f"""As a {analyst_level} cybersecurity analyst, analyze this threat:
THREAT: {threat_description}
Provide a {analyst_level} level security analysis including:
- Threat assessment
- Potential impact
- Recommended actions
ANALYSIS:"""
if pipe:
try:
result = pipe(
prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1
)
analysis = result[0]['generated_text'][len(prompt):].strip()
if len(analysis) < 30:
analysis = get_simple_fallback(threat_description, analyst_level)
except Exception as e:
analysis = f"AI Error: {str(e)[:100]}\n\n{get_simple_fallback(threat_description, analyst_level)}"
else:
analysis = get_simple_fallback(threat_description, analyst_level)
processing_time = round(time.time() - start_time, 2)
status = f"✅ Analysis completed in {processing_time}s | {model_status}"
return analysis, status
def get_simple_fallback(threat_description, analyst_level):
"""Simple fallback analysis"""
if analyst_level == "L1":
return f"""🚨 L1 TRIAGE ANALYSIS
THREAT SUMMARY:
{threat_description}
IMMEDIATE ACTIONS:
• Assess severity and scope
• Document all available evidence
• Isolate affected systems if needed
• Escalate to L2 if severity is high
PRIORITY: Immediate containment and escalation decision required"""
elif analyst_level == "L2":
return f"""🔍 L2 INVESTIGATION ANALYSIS
THREAT DETAILS:
{threat_description}
INVESTIGATION STEPS:
1. Collect and preserve evidence
2. Analyze attack vectors and methods
3. Determine scope of compromise
4. Identify indicators of compromise (IOCs)
5. Assess potential data exposure
CONTAINMENT:
• Implement network segmentation
• Deploy additional monitoring
• Review authentication logs
• Check for lateral movement
NEXT STEPS:
• Continue monitoring for related activity
• Update security controls as needed
• Consider L3 escalation for complex threats"""
else: # L3
return f"""🎯 L3 EXPERT ANALYSIS
STRATEGIC THREAT ASSESSMENT:
{threat_description}
ADVANCED ANALYSIS:
• Threat actor attribution assessment
• Campaign analysis and TTPs
• Business impact evaluation
• Risk quantification
STRATEGIC RESPONSE:
• Coordinate incident response team
• Executive briefing preparation
• Regulatory compliance review
• Long-term security posture improvements
RECOMMENDATIONS:
• Implement advanced threat hunting
• Enhance detection capabilities
• Review security architecture
• Consider external forensics support"""
# Create simple interface
with gr.Blocks(title="Simple SOC Analyzer", theme=gr.themes.Soft(), css=simple_css) as demo:
# Simple header
gr.Markdown("""
# 🛡️ SOC Threat Analyzer
**Simple • Fast • Effective**
Enter any security threat and get instant AI analysis.
""")
# Model status
status_display = gr.Textbox(
value="🔄 Loading model...",
label="System Status",
interactive=False,
elem_classes=["status-box"]
)
# Main interface
with gr.Row():
with gr.Column(scale=1):
# Threat input
threat_input = gr.Textbox(
label="🚨 Describe the Security Threat",
placeholder="Example: Suspicious PowerShell execution detected on user workstation with encoded commands...",
lines=5,
elem_classes=["threat-input"]
)
# Analysis level
analyst_level = gr.Radio(
choices=["L1", "L2", "L3"],
value="L2",
label="Analysis Level",
info="L1: Quick Triage • L2: Detailed Investigation • L3: Strategic Analysis"
)
# Analyze button
analyze_btn = gr.Button(
"🔍 Analyze Threat",
variant="primary",
size="lg",
elem_classes=["analyze-btn"]
)
# Quick examples
gr.Markdown("""
### 📝 Quick Examples:
- Suspicious email with malicious attachment
- Unusual network traffic to external IP
- User account showing signs of compromise
- Ransomware indicators detected on server
- Failed login attempts from multiple locations
""")
with gr.Column(scale=2):
# Analysis output
analysis_output = gr.Textbox(
label="🤖 Security Analysis",
lines=20,
interactive=False,
elem_classes=["analysis-output"],
placeholder="Analysis will appear here..."
)
# Processing status
process_status = gr.Textbox(
label="Processing Status",
interactive=False,
lines=1
)
# Quick action buttons
with gr.Row():
gr.Button("💾 Save Analysis", variant="secondary", size="sm")
gr.Button("📧 Email Report", variant="secondary", size="sm")
gr.Button("🔄 Clear All", variant="secondary", size="sm")
# Simple footer
gr.Markdown("""
---
**💡 Tips:** Be specific about what you observed, include timestamps, IP addresses, user accounts, or file names when available.
""")
# Event handlers
analyze_btn.click(
fn=analyze_threat,
inputs=[threat_input, analyst_level],
outputs=[analysis_output, process_status]
)
# Initialize model on startup
demo.load(
fn=load_model,
outputs=[status_display]
)
if __name__ == "__main__":
demo.launch(share=True) |