Spaces:
Running
Running
File size: 12,811 Bytes
60a25ab 1b5b9ce def429d 1b5b9ce def429d 1b5b9ce 52b6878 def429d 60a25ab def429d ecc3973 def429d ecc3973 60a25ab ecc3973 52b6878 ecc3973 52b6878 ecc3973 10bd6bb 1b5b9ce 52b6878 ecc3973 10bd6bb 52b6878 10bd6bb ecc3973 10bd6bb 52b6878 1b5b9ce 287afed 1b5b9ce 52b6878 10bd6bb ecc3973 52b6878 ecc3973 10bd6bb 52b6878 10bd6bb ecc3973 52b6878 ecc3973 10bd6bb 52b6878 1b5b9ce 52b6878 10bd6bb 52b6878 ecc3973 52b6878 1b5b9ce 52b6878 10bd6bb def429d 10bd6bb def429d e988684 def429d c156661 def429d ecc3973 def429d 10bd6bb def429d 52b6878 def429d ecc3973 def429d ecc3973 def429d ecc3973 def429d ecc3973 efc2a65 ecc3973 60a25ab efc2a65 52b6878 ecc3973 98cf6a3 ecc3973 def429d ecc3973 52b6878 ecc3973 def429d 10bd6bb 60a25ab 52b6878 def429d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import json
import os
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from sklearn.metrics import accuracy_score
from torch.utils.data import DataLoader
from transformers import Trainer, TrainingArguments
import time
import requests
from bs4 import BeautifulSoup
import tempfile
import zipfile
import mimetypes
from tqdm import tqdm
import logging
import gradio as gr
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- URL and File Processing Functions ---
def fetch_content(url, retries=3):
for attempt in range(retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
logger.info(f"Successfully fetched content from {url}")
return response.text
except requests.RequestException as e:
logger.error(f"Error fetching {url} (attempt {attempt + 1}/{retries}): {e}")
if attempt == retries - 1:
return None
def extract_text(html):
if not html:
logger.warning("Empty HTML content provided for extraction.")
return ""
soup = BeautifulSoup(html, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
extracted_text = '\n'.join(chunk for chunk in chunks if chunk)
logger.info("Text extraction completed.")
return extracted_text
def process_urls(urls):
dataset = []
for url in tqdm(urls, desc="Fetching URLs"):
if not url.startswith("http://") and not url.startswith("https://"):
logger.warning(f"Invalid URL format: {url}")
continue
html = fetch_content(url)
if html:
text = extract_text(html)
if text:
dataset.append({"source": "url", "url": url, "content": text})
else:
logger.warning(f"No text extracted from {url}")
else:
logger.error(f"Failed to fetch content from {url}")
time.sleep(1)
return dataset
def preprocess_bulk_text(text: str) -> str:
"""
Preprocess bulk text input by adding commas between logical separations.
Handles line breaks, slashes, and domain endings.
"""
# First, normalize line endings
text = text.replace('\r\n', '\n').replace('\r', '\n')
# Split by common separators
separators = [
'\n', # Line breaks
' / ', # Forward slashes with spaces
'/', # Forward slashes
';', # Semicolons
' - ', # Dashes with spaces
'|', # Vertical bars
' ' # Double spaces
]
# Replace separators with commas if not already comma-separated
if ',' not in text:
for separator in separators:
text = text.replace(separator, ',')
# Handle domain endings (e.g., .com .org .net)
import re
domain_pattern = r'(\.[a-z]{2,})\s+'
text = re.sub(domain_pattern, r'\1,', text)
# Clean up multiple commas
text = re.sub(r',+', ',', text)
# Remove leading/trailing commas and whitespace
text = text.strip(',' + string.whitespace)
# Ensure proper spacing around commas
text = re.sub(r'\s*,\s*', ', ', text)
return text
# Example usage:
def process_input(text: str) -> List[str]:
"""Process input text and return list of items"""
processed_text = preprocess_bulk_text(text)
return [item.strip() for item in processed_text.split(',') if item.strip()]
# Add to the interface
with gr.Row():
text_input = gr.Textbox(
label="Bulk Input",
placeholder="Enter items separated by line breaks, slashes, or other separators"
)
process_btn = gr.Button("Process")
output_list = gr.JSON(label="Processed Items")
process_btn.click(
process_input,
inputs=[text_input],
outputs=[output_list]
)
def process_file(file):
dataset = []
with tempfile.TemporaryDirectory() as temp_dir:
if zipfile.is_zipfile(file.name):
with zipfile.ZipFile(file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
for root, _, files in os.walk(temp_dir):
for filename in files:
filepath = os.path.join(root, filename)
mime_type, _ = mimetypes.guess_type(filepath)
if mime_type and mime_type.startswith('text'):
with open(filepath, 'r', errors='ignore') as f:
content = f.read()
if content.strip():
dataset.append({"source": "file", "filename": filename, "content": content})
else:
logger.warning(f"File {filename} is empty.")
else:
logger.warning(f"File {filename} is not a text file.")
dataset.append({"source": "file", "filename": filename, "content": "Binary file - content not extracted"})
else:
mime_type, _ = mimetypes.guess_type(file.name)
if mime_type and mime_type.startswith('text'):
content = file.read().decode('utf-8', errors='ignore')
if content.strip():
dataset.append({"source": "file", "filename": os.path.basename(file.name), "content": content})
else:
logger.warning(f"Uploaded file {file.name} is empty.")
else:
logger.warning(f"Uploaded file {file.name} is not a text file.")
dataset.append({"source": "file", "filename": os.path.basename(file.name), "content": "Binary file - content not extracted"})
return dataset
def create_dataset(urls, file, text_input):
dataset = []
if urls:
dataset.extend(process_urls([url.strip() for url in urls.split(',') if url.strip()]))
if file:
dataset.extend(process_file(file))
if text_input:
dataset.append({"source": "input", "content": text_input})
logger.info(f"Dataset created with {len(dataset)} entries.")
output_file = 'combined_dataset.json'
with open(output_file, 'w') as f:
json.dump(dataset, f, indent=2)
return output_file
# --- Model Training and Evaluation Functions ---
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, data, tokenizer, max_length=512):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
text = self.data[idx]['content'] # Fixed the key to 'content'
label = self.data[idx].get('label', 0)
encoding = self.tokenizer.encode_plus(
text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
return {
'input_ids': encoding['input_ids'].squeeze(),
'attention_mask': encoding['attention_mask'].squeeze(),
'labels': torch.tensor(label, dtype=torch.long)
}
except Exception as e:
logger.error(f"Error in processing item {idx}: {e}")
raise
def train_model(model_name, data, batch_size, epochs, learning_rate=1e-5, max_length=2048):
try:
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
dataset = CustomDataset(data, tokenizer, max_length=max_length)
if len(dataset) == 0:
logger.error("The dataset is empty. Please check the input data.")
return None, None
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
eval_strategy='epoch',
save_strategy='epoch',
learning_rate=learning_rate,
save_steps=500,
load_best_model_at_end=True,
metric_for_best_model='accuracy',
greater_is_better=True,
save_total_limit=2,
seed=42,
dataloader_num_workers=4,
fp16=torch.cuda.is_available()
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=lambda pred: {
'accuracy': accuracy_score(pred.label_ids, pred.predictions.argmax(-1))
}
)
logger.info("Starting model training...")
start_time = time.time()
trainer.train()
end_time = time.time()
logger.info(f'Training time: {end_time - start_time:.2f} seconds')
logger.info("Evaluating model...")
eval_result = trainer.evaluate()
logger.info(f'Evaluation result: {eval_result}')
trainer.save_model('./model')
return model, tokenizer
except Exception as e:
logger.error(f"Error during training: {e}")
raise
def deploy_model(model, tokenizer):
try:
model.save_pretrained('./model')
tokenizer.save_pretrained('./model')
deployment_script = f'''
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained('./model')
tokenizer = AutoTokenizer.from_pretrained('./model')
def predict(text):
encoding = tokenizer.encode_plus(
text,
max_length=512,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
input_ids = encoding['input_ids'].to('cuda' if torch.cuda.is_available() else 'cpu')
attention_mask = encoding['attention_mask'].to('cuda' if torch.cuda.is_available() else 'cpu')
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
return torch.argmax(logits, dim=1).cpu().numpy()[0]
'''
with open('./deployment.py', 'w') as f:
f.write(deployment_script)
logger.info('Model deployed successfully. To use the model, run: python deployment.py')
except Exception as e:
logger.error(f"Error deploying model: {e}")
raise
# Gradio Interface
def gradio_interface(urls, file, text_input, model_name, batch_size, epochs):
try:
dataset_file = create_dataset(urls, file, text_input)
with open(dataset_file, 'r') as f:
dataset = json.load(f)
if not dataset:
return "Error: The dataset is empty. Please check your inputs."
model, tokenizer = train_model(model_name, dataset, batch_size, epochs)
deploy_model(model, tokenizer)
return dataset_file
except Exception as e:
logger.error(f"Error in gradio_interface: {e}")
return f"An error occurred: {str(e)}"
# Gradio Interface Setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(lines=5, label="Enter comma-separated URLs", placeholder="http://example.com, https://example.org"),
gr.File(label="Upload file (including zip files)", type="filepath"),
gr.Textbox(lines=10, label="Enter or paste large text", placeholder="Your text here..."),
gr.Textbox(label="Model name", value="distilbert-base-uncased"),
gr.Number(label="Batch size", value=8, precision=0, step=1),
gr.Number(label="Epochs", value=3, precision=0, step=1),
],
outputs=gr.File(label="Download Combined Dataset"),
title="Dataset Creation and Model Training",
description="Enter URLs, upload files (including zip files), and/or paste text to create a dataset and train a model.",
theme="default",
)
# Launch the interface
if __name__ == "__main__":
iface.launch() |