ACMCMC
WIP
7b2eb9e
import gradio as gr
import requests
import json
def respond(
message,
history: list[tuple[str, str]],
system_message,
access_token,
model_endpoint,
max_tokens,
temperature,
top_p,
):
# Build conversation history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Vertex AI API request
headers = {
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json"
}
payload = {
"instances": [{
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p
}]
}
try:
response = requests.post(model_endpoint, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
# Extract response text from Vertex AI response format
generated_text = result["predictions"][0]["content"]
yield generated_text
except Exception as e:
yield f"Error: {str(e)}"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Textbox(value="", label="Google Cloud Access Token", type="password"),
gr.Textbox(value="", label="Vertex AI Model Endpoint URL", placeholder="https://us-central1-aiplatform.googleapis.com/v1/projects/YOUR_PROJECT/locations/us-central1/endpoints/YOUR_ENDPOINT:predict"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()