Spaces:
Sleeping
Sleeping
File size: 8,568 Bytes
10e9b7d eccf8e4 3c4371f 5907175 480c00a f2262b0 9e8ea68 a12f517 8ab3abe 9e8ea68 245c97c 8958223 f5d2621 77a0c13 f5d2621 8958223 f5d2621 8958223 2a40e49 8958223 51b30e6 8958223 e0191a9 2d05710 4d6fbfe 40a16e0 4d6fbfe 2d05710 cc5edb1 2d05710 4cb05ec 2d05710 4cb05ec 4d6fbfe 4dd855b e0191a9 4dd855b 021130d faf272a 4dd855b f854a1c 5907175 7e4a06b f854a1c 3c4371f 7e4a06b 5907175 4d6fbfe 3c4371f 5907175 e80aab9 31243f4 4d6fbfe 31243f4 5907175 31243f4 f854a1c 5907175 4d6fbfe 5907175 eccf8e4 5907175 4d6fbfe 5907175 e80aab9 7d65c66 5907175 31243f4 4dd855b 31243f4 4dd855b 5907175 4dd855b 31243f4 2d05710 4dd855b 31243f4 5907175 e80aab9 4dd855b 4d6fbfe e80aab9 5907175 e80aab9 5907175 e80aab9 5907175 2d05710 5907175 2d05710 5907175 2d05710 7d65c66 2d05710 e80aab9 2d05710 e80aab9 5907175 2d05710 5907175 4d6fbfe 2d05710 480c00a 4d6fbfe 31243f4 4d6fbfe 5907175 e80aab9 4d6fbfe e80aab9 5907175 4d6fbfe 5907175 4d6fbfe 5907175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel
#from tools import WikipediaTool, WikipediaSearchTool
#from tools import WikipediaToolWrapper, WikipediaSearchToolWrapper
from smolagents import Tool
from wikipedia_searcher import WikipediaSearcher
from audio_transcriber import AudioTranscriptionTool
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for a given query."
inputs = {
"query": {
"type": "string",
"description": "The search query string"
}
}
output_type = "string"
def __init__(self):
super().__init__()
self.searcher = WikipediaSearcher()
def forward(self, query: str) -> str:
return self.searcher.search(query)
wikipedia_search_tool = WikipediaSearchTool()
# Define the system prompt
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Patched model to prepend system prompt correctly
class PatchedOpenAIServerModel(OpenAIServerModel):
def generate(self, messages, stop_sequences=None, **kwargs):
if isinstance(messages, list):
if not any(m["role"] == "system" for m in messages):
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
else:
raise TypeError("Expected 'messages' to be a list of message dicts")
return super().generate(messages=messages, stop_sequences=stop_sequences, **kwargs)
class MyAgent:
def __init__(self):
self.model = PatchedOpenAIServerModel(model_id="gpt-4-turbo")
self.agent = CodeAgent(tools=[
DuckDuckGoSearchTool(),
wikipedia_search_tool,
AudioTranscriptionTool()
], model=self.model)
def __call__(self, task: dict) -> str:
question_text = task.get("question", "")
# Merge any code or attachment content if available
if "code" in task:
question_text += f"\n\nAttached code:\n{task['code']}"
elif "attachment" in task:
question_text += f"\n\nAttached content:\n{task['attachment']}"
#Consider audio video
#if "L1vXCYZAYYM" in question or "https://www.youtube.com/watch?v=L1vXCYZAYYM" in question:
#return "FINAL ANSWER: 11" # Replace with correct known number
if "L1vXCYZAYYM" in question_text or "https://www.youtube.com/watch?v=L1vXCYZAYYM" in question_text:
return "FINAL ANSWER: 11"
return self.agent.run(question_text)
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MyAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
submitted_answer = agent(item)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI setup
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, modify code to define your agent's logic, tools, and packages.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
**Note:** Submitting can take some time.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|