Spaces:
Sleeping
Sleeping
File size: 6,516 Bytes
10e9b7d c64bf2e 4097d7c c64bf2e 36b55d3 4097d7c c64bf2e 4097d7c 245c97c 80241aa 03f0224 e385f31 4097d7c 36b55d3 4097d7c 03f0224 4097d7c 36b55d3 03f0224 36b55d3 4097d7c 36b55d3 03f0224 4097d7c c64bf2e 8958223 36b55d3 c64bf2e 36b55d3 c64bf2e 4097d7c c64bf2e 36b55d3 c64bf2e 8958223 36b55d3 4dd855b f854a1c 5907175 7e4a06b f854a1c 7e4a06b 4d6fbfe 3c4371f 36b55d3 e80aab9 31243f4 4d6fbfe 31243f4 f854a1c 5907175 eccf8e4 5907175 4d6fbfe 5907175 e80aab9 7d65c66 36b55d3 31243f4 4dd855b 31243f4 36b55d3 4dd855b 36b55d3 4dd855b 31243f4 4dd855b 36b55d3 4dd855b 31243f4 4dd855b 36b55d3 e80aab9 5907175 e80aab9 5907175 e80aab9 36b55d3 7d65c66 36b55d3 e80aab9 4097d7c e80aab9 36b55d3 4d6fbfe 36b55d3 e80aab9 36b55d3 e80aab9 5907175 4097d7c 36b55d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import gradio as gr
import requests
import pandas as pd
from typing import List, Dict
from smolagents import CodeAgent, DuckDuckGoSearchTool, Tool
from wikipedia_searcher import WikipediaSearcher
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for a given query."
inputs = {
"query": {
"type": "string",
"description": "The search query string"
}
}
output_type = "string"
def __init__(self):
super().__init__()
self.searcher = WikipediaSearcher()
def forward(self, query: str) -> str:
return self.searcher.search(query)
# Hugging Face Inference API wrapper for chat completion
class HFChatModel:
def __init__(self, model_id: str):
self.model_id = model_id
self.api_url = f"https://api-inference.huggingface.co/models/{model_id}"
self.headers = {"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}"}
self.system_prompt = """
You are an agent solving the GAIA benchmark and you are required to provide exact answers.
Rules to follow:
1. Return only the exact requested answer: no explanation and no reasoning.
2. For yes/no questions, return exactly "Yes" or "No".
3. For dates, use the exact format requested.
4. For numbers, use the exact number, no other format.
5. For names, use the exact name as found in sources.
6. If the question has an associated file, download the file first using the task ID.
Examples of good responses:
- "42"
- "Yes"
- "October 5, 2001"
- "Buenos Aires"
Never include phrases like "the answer is..." or "Based on my research".
Only return the exact answer.
"""
def generate(self, messages: List[Dict[str, str]]) -> str:
# Prepend system prompt as first message
all_messages = [{"role": "system", "content": self.system_prompt}] + messages
payload = {
"inputs": {
"past_user_inputs": [],
"generated_responses": [],
"text": "\n".join(m["content"] for m in all_messages if m["role"] != "system")
}
}
# Some HF chat models expect just a string prompt; adjust accordingly per your model's requirements
response = requests.post(self.api_url, headers=self.headers, json=payload)
if response.status_code == 200:
output = response.json()
# Output format depends on model; adjust as needed
if isinstance(output, list) and len(output) > 0 and "generated_text" in output[0]:
return output[0]["generated_text"].strip()
elif isinstance(output, dict) and "generated_text" in output:
return output["generated_text"].strip()
else:
# fallback to raw text
return str(output).strip()
else:
raise RuntimeError(f"Hugging Face API error {response.status_code}: {response.text}")
class MyAgent:
def __init__(self):
self.model = HFChatModel(model_id="gpt-4o-mini") # Or any HF chat model you want
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
AudioTranscriptionTool(),
ImageAnalysisTool(),
],
model=self, # We'll route calls via __call__ below
)
def __call__(self, prompt: str) -> str:
# Construct chat message for HF model
messages = [{"role": "user", "content": prompt}]
return self.model.generate(messages)
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
else:
return "Please Login to Hugging Face with the button.", None
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = MyAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
answer = agent(item.get("question", ""))
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": f"Error: {e}"
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner (HF API)")
gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
status_out = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_df = gr.DataFrame(label="Questions and Agent Answers")
run_btn.click(fn=run_and_submit_all, outputs=[status_out, results_df])
if __name__ == "__main__":
demo.launch(debug=True, share=False)
|