Spaces:
Sleeping
Sleeping
File size: 8,535 Bytes
10e9b7d c64bf2e 4097d7c c64bf2e 4097d7c c64bf2e 4097d7c 245c97c 80241aa 03f0224 e385f31 4097d7c e385f31 4097d7c 03f0224 4097d7c 03f0224 4097d7c c64bf2e 4097d7c c64bf2e 03f0224 4097d7c c64bf2e 8958223 c64bf2e 4097d7c c64bf2e 4097d7c c64bf2e 4097d7c c64bf2e 8958223 03f0224 4097d7c 8958223 4097d7c 4dd855b 4097d7c 4dd855b f854a1c 5907175 7e4a06b f854a1c 3c4371f 7e4a06b 5907175 4d6fbfe 3c4371f 5907175 e80aab9 31243f4 4d6fbfe 31243f4 5907175 31243f4 f854a1c 5907175 4d6fbfe 5907175 eccf8e4 5907175 4d6fbfe 5907175 e80aab9 7d65c66 5907175 31243f4 4dd855b 31243f4 4dd855b 5907175 4dd855b 31243f4 2d05710 4dd855b 31243f4 5907175 e80aab9 4dd855b 4d6fbfe e80aab9 5907175 e80aab9 5907175 e80aab9 5907175 2d05710 5907175 2d05710 5907175 2d05710 7d65c66 2d05710 e80aab9 4097d7c 2d05710 e80aab9 5907175 2d05710 5907175 4d6fbfe 2d05710 480c00a 4d6fbfe 31243f4 4d6fbfe 5907175 e80aab9 4d6fbfe e80aab9 4097d7c 5907175 4d6fbfe 5907175 4d6fbfe 5907175 4097d7c 5907175 4097d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, Tool
from smolagents.models import OpenAIServerModel
from wikipedia_searcher import WikipediaSearcher
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia for a given query."
inputs = {
"query": {
"type": "string",
"description": "The search query string"
}
}
output_type = "string"
def __init__(self):
super().__init__()
self.searcher = WikipediaSearcher()
def forward(self, query: str) -> str:
return self.searcher.search(query)
# Instantiate the Wikipedia search tool once
wikipedia_search_tool = WikipediaSearchTool()
# Static system prompt for GAIA exact answer format (no explanations)
SYSTEM_PROMPT = """
You are an agent solving the GAIA benchmark and you are required to provide exact answers.
Rules to follow:
1. Return only the exact requested answer: no explanation and no reasoning.
2. For yes/no questions, return exactly "Yes" or "No".
3. For dates, use the exact format requested.
4. For numbers, use the exact number, no other format.
5. For names, use the exact name as found in sources.
6. If the question has an associated file, download the file first using the task ID.
Examples of good responses:
- "42"
- "Yes"
- "October 5, 2001"
- "Buenos Aires"
Never include phrases like "the answer is..." or "Based on my research".
Only return the exact answer.
"""
# Set your actual API URL here (replace with the correct GAIA API URL)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Patched OpenAIServerModel to prepend system prompt
class PatchedOpenAIServerModel(OpenAIServerModel):
def generate(self, messages, stop_sequences=None, **kwargs):
if isinstance(messages, list):
if not any(m["role"] == "system" for m in messages):
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
else:
raise TypeError("Expected 'messages' to be a list of message dicts")
return super().generate(messages=messages, stop_sequences=stop_sequences, **kwargs)
class MyAgent:
def __init__(self):
self.model = PatchedOpenAIServerModel(model_id="gpt-4-turbo")
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
wikipedia_search_tool,
AudioTranscriptionTool(),
ImageAnalysisTool(),
],
model=self.model,
)
def __call__(self, task: dict) -> str:
question_text = task.get("question", "")
# Merge any code or attachment content if available
if "code" in task:
question_text += f"\n\nAttached code:\n{task['code']}"
elif "attachment" in task:
question_text += f"\n\nAttached content:\n{task['attachment']}"
# Handle special known cases if needed (example)
if "L1vXCYZAYYM" in question_text or "https://www.youtube.com/watch?v=L1vXCYZAYYM" in question_text:
return "11" # Example known answer without extra text
return self.agent.run(question_text)
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MyAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
if not task_id:
continue
try:
submitted_answer = agent(item)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
results_log.append({
"Task ID": task_id,
"Question": item.get("question", ""),
"Submitted Answer": error_msg
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
try:
detail = e.response.json().get("detail", e.response.text)
except Exception:
detail = e.response.text[:500]
return f"Submission Failed: {detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# Gradio UI setup
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space, modify code to define your agent's logic, tools, and packages.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
**Note:** Submitting can take some time.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|