File size: 7,459 Bytes
10e9b7d
 
eccf8e4
3c4371f
5907175
480c00a
 
f2262b0
4d6fbfe
 
 
40a16e0
 
4d6fbfe
 
 
 
cc5edb1
 
 
 
 
 
4d6fbfe
 
cc5edb1
 
4d6fbfe
 
 
 
 
 
 
 
f854a1c
 
 
5907175
7e4a06b
f854a1c
3c4371f
7e4a06b
5907175
4d6fbfe
3c4371f
5907175
 
 
e80aab9
31243f4
4d6fbfe
31243f4
5907175
31243f4
f854a1c
5907175
4d6fbfe
5907175
 
eccf8e4
5907175
 
 
 
 
 
 
4d6fbfe
5907175
 
e80aab9
7d65c66
 
5907175
31243f4
 
5907175
 
4d6fbfe
31243f4
 
5907175
 
4d6fbfe
31243f4
5907175
4d6fbfe
31243f4
 
5907175
 
e80aab9
4d6fbfe
 
e80aab9
5907175
 
 
 
e80aab9
 
5907175
 
 
e80aab9
5907175
 
 
 
 
 
 
 
 
 
 
 
4d6fbfe
5907175
 
 
4d6fbfe
7d65c66
4d6fbfe
5907175
4d6fbfe
e80aab9
 
5907175
 
 
 
4d6fbfe
 
 
 
 
5907175
 
480c00a
4d6fbfe
31243f4
4d6fbfe
5907175
 
e80aab9
4d6fbfe
e80aab9
 
5907175
 
 
 
 
 
 
 
4d6fbfe
5907175
 
 
 
 
 
4d6fbfe
5907175
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel

# System prompt as per your instructions
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list 
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Custom model wrapper that injects system message
class PatchedOpenAIServerModel(OpenAIServerModel):
    def generate(self, messages, *args, **kwargs):
        messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
        return super().generate(messages, *args, **kwargs)

class MyAgent:
    def __init__(self):
        self.model = PatchedOpenAIServerModel(
            model_id="gpt-4"  # system_message removed; injected manually
        )
        self.agent = CodeAgent(
            tools=[DuckDuckGoSearchTool()],
            model=self.model
        )

    def __call__(self, question: str) -> str:
        return self.agent.run(question)

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping invalid item: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except Exception:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)

with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space, modify code to define your agent's logic, tools, and packages.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
        
        **Note:** Submitting can take some time.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?).")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)