joshuarebo's picture
Update app.py
c98a4ad verified
raw
history blame
6.18 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import torch
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced GAIA-Ready Agent ---
class GaiaAgent:
def __init__(self):
print("Initializing GaiaAgent with open-source model...")
model_name = "google/flan-t5-large" # Good balance between size and reasoning quality
auth_token = os.getenv("HF_TOKEN")
self.device = 0 if torch.cuda.is_available() else -1
self.pipe = pipeline(
"text2text-generation",
model=model_name,
tokenizer=model_name,
token=auth_token,
device=self.device
)
print("Model and tokenizer loaded.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:60]}...")
prompt = (
f"Answer the following question as accurately as possible.\n"
f"Question: {question}\n"
f"Answer:"
)
try:
result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"]
# Ensure clean return without "Answer:" prefix
answer = result.strip().replace("Answer:", "").strip()
print(f"Agent returned: {answer}")
return answer
except Exception as e:
print(f"Error during model inference: {e}")
return f"AGENT ERROR: {e}"
# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
return f"Error decoding server response for questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.RequestException as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA-Level Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Modify and extend the agent in the code section.
2. Login with your Hugging Face account to submit answers.
3. Click the button to run and submit.
---
*This agent uses `google/flan-t5-large` from Hugging Face to answer questions.*
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found.")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID not found.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)