Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,492 Bytes
d5f497d 6c91ee7 66fd925 6c91ee7 011d756 a0ed24e 66fd925 d5f497d 66fd925 6c91ee7 66fd925 6c91ee7 c1d518d a0ed24e c1d518d a0ed24e 2432eb0 fedbad2 a0ed24e fedbad2 fe7b6d8 c1d518d fe7b6d8 c1d518d ed12c55 c1d518d 2432eb0 c1d518d fe7b6d8 2432eb0 c1d518d 2432eb0 c1d518d 2432eb0 fedbad2 2432eb0 c1d518d 2432eb0 c1d518d fe7b6d8 c1d518d fe7b6d8 c1d518d 66fd925 c1d518d 66fd925 a0ed24e 6c91ee7 d5f497d fe7b6d8 2432eb0 c1d518d ed12c55 c1d518d ed12c55 fedbad2 c1d518d fedbad2 c1d518d fedbad2 a0ed24e d5f497d c1d518d a0ed24e c1d518d 66fd925 a0ed24e c1d518d 66fd925 6c91ee7 66fd925 a0ed24e 66fd925 c1d518d d5f497d 98c6239 d5f497d c1d518d ed12c55 c1d518d a0ed24e 2432eb0 a0ed24e c1d518d ed12c55 fedbad2 fe7b6d8 c1d518d fedbad2 c1d518d fedbad2 c1d518d 2502de8 c1d518d fedbad2 c1d518d fedbad2 c1d518d fedbad2 c1d518d 2432eb0 c1d518d 2432eb0 c1d518d fedbad2 66fd925 ed12c55 c1d518d a04b247 c1d518d d5f497d 3f2277e 6429b4b fedbad2 fe7b6d8 fedbad2 fe7b6d8 fedbad2 fe7b6d8 fedbad2 c1d518d 6429b4b c1d518d 6429b4b c1d518d d5f497d fedbad2 fe7b6d8 fedbad2 fe7b6d8 fedbad2 fe7b6d8 c1d518d d5f497d fe7b6d8 d5f497d fedbad2 d5f497d c1d518d fe7b6d8 c1d518d fe7b6d8 c1d518d d5f497d fe7b6d8 a0ed24e c1d518d 66fd925 a0ed24e 78ad020 a0ed24e c1d518d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download, login
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis
# ---------------------------
# Runtime / device settings
# ---------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
if HF_TOKEN:
login(token=HF_TOKEN)
print("Successfully logged in to Hugging Face Hub")
print("Downloading models...")
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", token=HF_TOKEN)
print("Loading models on CPU first...")
# ---------------------------
# ChatGLM tokenizer pad fix
# ---------------------------
original_chatglm_pad = ChatGLMTokenizer._pad if hasattr(ChatGLMTokenizer, '_pad') else None
def fixed_pad(self, *args, **kwargs):
kwargs.pop('padding_side', None)
if original_chatglm_pad:
return original_chatglm_pad(self, *args, **kwargs)
else:
return super(ChatGLMTokenizer, self)._pad(*args, **kwargs)
ChatGLMTokenizer._pad = fixed_pad
# ---------------------------
# Load Kolors components (dtype fp16 on CUDA, fp32 on CPU)
# ---------------------------
text_encoder = ChatGLMModel.from_pretrained(
f"{ckpt_dir}/text_encoder",
torch_dtype=DTYPE,
trust_remote_code=True
)
tokenizer = ChatGLMTokenizer.from_pretrained(
f"{ckpt_dir}/text_encoder",
trust_remote_code=True
)
vae = AutoencoderKL.from_pretrained(
f"{ckpt_dir}/vae",
torch_dtype=DTYPE
)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(
f"{ckpt_dir}/unet",
torch_dtype=DTYPE
)
# CLIP image encoder + processor
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"openai/clip-vit-large-patch14-336",
torch_dtype=DTYPE,
use_safetensors=True
)
clip_image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-large-patch14-336"
)
# Create pipeline (initially on CPU to be safe with memory)
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
face_clip_encoder=clip_image_encoder,
face_clip_processor=clip_image_processor,
force_zeros_for_empty_prompt=False,
)
print("Models loaded successfully!")
# ---------------------------
# InsightFace helper (force CPU provider to avoid CUDA init errors)
# ---------------------------
class FaceInfoGenerator:
def __init__(self, root_dir: str = "./.insightface/"):
providers = ["CPUExecutionProvider"] # GPU ์๋ ํ๊ฒฝ์์ ์์
self.app = FaceAnalysis(
name="antelopev2",
root=root_dir,
providers=providers
)
self.app.prepare(ctx_id=0, det_size=(640, 640))
def get_faceinfo_one_img(self, face_image: Image.Image):
if face_image is None:
return None
# PIL RGB -> OpenCV BGR
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
return None
# Largest face
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1])
)[-1]
return face_info
def face_bbox_to_square(bbox):
l, t, r, b = bbox
cent_x = (l + r) / 2
cent_y = (t + b) / 2
w, h = r - l, b - t
rad = max(w, h) / 2
return [cent_x - rad, cent_y - rad, cent_x + rad, cent_y + rad]
MAX_SEED = np.iinfo(np.int32).max
face_info_generator = FaceInfoGenerator()
# ---------------------------
# Inference function
# - No @spaces.GPU decorator (GPU ์์ ๋ ์ถฉ๋ ๋ฐฉ์ง)
# - Autocast only on CUDA
# ---------------------------
def infer(
prompt,
image=None,
negative_prompt="low quality, blurry, distorted",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=25
):
if image is None:
gr.Warning("Please upload an image with a face.")
return None, 0
# Detect face (InsightFace on CPU)
face_info = face_info_generator.get_faceinfo_one_img(image)
if face_info is None:
raise gr.Error("No face detected. Please upload an image with a clear face.")
# Prepare crop for IP-Adapter FaceID
face_bbox_square = face_bbox_to_square(face_info["bbox"])
crop_image = image.crop(face_bbox_square).resize((336, 336))
crop_image = [crop_image] # pipeline expects list
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
# Device move
device = torch.device(DEVICE)
global pipe
# Move modules to device with proper dtype
pipe.vae = pipe.vae.to(device, dtype=DTYPE)
pipe.text_encoder = pipe.text_encoder.to(device, dtype=DTYPE)
pipe.unet = pipe.unet.to(device, dtype=DTYPE)
pipe.face_clip_encoder = pipe.face_clip_encoder.to(device, dtype=DTYPE)
face_embeds = face_embeds.to(device, dtype=DTYPE)
# Load IP-Adapter weights (FaceID Plus)
pipe.load_ip_adapter_faceid_plus(f"{ckpt_dir_faceid}/ipa-faceid-plus.bin", device=device)
pipe.set_face_fidelity_scale(0.8)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Inference: autocast only on CUDA
with torch.no_grad():
if DEVICE == "cuda":
with torch.autocast(device_type="cuda", dtype=torch.float16):
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=1024,
width=1024,
num_inference_steps=int(num_inference_steps),
guidance_scale=float(guidance_scale),
num_images_per_prompt=1,
generator=generator,
face_crop_image=crop_image,
face_insightface_embeds=face_embeds
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=1024,
width=1024,
num_inference_steps=int(num_inference_steps),
guidance_scale=float(guidance_scale),
num_images_per_prompt=1,
generator=generator,
face_crop_image=crop_image,
face_insightface_embeds=face_embeds
).images
result = images[0]
# Offload back to CPU to free GPU memory
try:
pipe.vae = pipe.vae.to("cpu")
pipe.text_encoder = pipe.text_encoder.to("cpu")
pipe.unet = pipe.unet.to("cpu")
pipe.face_clip_encoder = pipe.face_clip_encoder.to("cpu")
if DEVICE == "cuda":
torch.cuda.empty_cache()
except Exception:
pass
return result, seed
# If CUDA is available, optionally wrap with spaces.GPU for scheduling
if torch.cuda.is_available():
infer = spaces.GPU(duration=120)(infer)
# ---------------------------
# Gradio UI
# ---------------------------
css = """
footer { visibility: hidden; }
#col-left, #col-right { max-width: 640px; margin: 0 auto; }
.gr-button { max-width: 100%; }
"""
with gr.Blocks(theme="soft", css=css) as Kolors:
gr.HTML(
"""
<div style='text-align: center;'>
<h1>๐จ Kolors Face ID - AI Portrait Generator</h1>
<p>Upload a face photo and create stunning AI portraits!</p>
<div style='display:flex; justify-content:center; gap:12px; margin-top:20px;'>
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
<img src="https://img.shields.io/badge/OpenFree-BEST%20AI-blue?style=for-the-badge" alt="OpenFree">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/badge/Discord-OpenFree%20AI-purple?style=for-the-badge&logo=discord" alt="Discord">
</a>
</div>
<div style='margin-top:8px;font-size:12px;opacity:.7;'>
Device: {device}, DType: {dtype}
</div>
</div>
""".format(device=DEVICE.upper(), dtype=str(DTYPE).replace("torch.", ""))
)
with gr.Row():
with gr.Column(elem_id="col-left"):
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the portrait style you want...",
lines=3,
value="A professional portrait photo, high quality"
)
image = gr.Image(label="Upload Face Image", type="pil", height=300)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
value="low quality, blurry, distorted"
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=66)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(label="Guidance", minimum=1, maximum=10, step=0.5, value=5.0)
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, step=5, value=25)
button = gr.Button("๐จ Generate Portrait", variant="primary")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Generated Portrait")
seed_used = gr.Number(label="Seed Used", precision=0)
button.click(
fn=infer,
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs=[result, seed_used]
)
if __name__ == "__main__":
Kolors.queue(max_size=20).launch(debug=True)
|