File size: 10,492 Bytes
d5f497d
 
 
6c91ee7
66fd925
6c91ee7
 
011d756
a0ed24e
 
66fd925
d5f497d
 
66fd925
6c91ee7
 
 
66fd925
6c91ee7
c1d518d
 
 
a0ed24e
c1d518d
 
 
a0ed24e
 
 
2432eb0
fedbad2
 
 
a0ed24e
fedbad2
fe7b6d8
c1d518d
 
 
fe7b6d8
 
 
 
 
 
 
 
 
c1d518d
ed12c55
c1d518d
2432eb0
c1d518d
 
fe7b6d8
2432eb0
 
c1d518d
2432eb0
 
 
 
c1d518d
2432eb0
fedbad2
2432eb0
 
c1d518d
2432eb0
 
c1d518d
fe7b6d8
c1d518d
 
fe7b6d8
 
c1d518d
 
 
66fd925
c1d518d
66fd925
a0ed24e
 
 
 
 
 
 
 
6c91ee7
d5f497d
fe7b6d8
2432eb0
c1d518d
ed12c55
c1d518d
 
 
ed12c55
fedbad2
c1d518d
fedbad2
c1d518d
fedbad2
a0ed24e
d5f497d
c1d518d
a0ed24e
 
c1d518d
66fd925
 
a0ed24e
c1d518d
 
 
 
 
66fd925
6c91ee7
66fd925
a0ed24e
66fd925
 
 
c1d518d
 
d5f497d
 
98c6239
d5f497d
c1d518d
 
ed12c55
 
c1d518d
 
 
 
 
 
 
 
 
 
a0ed24e
2432eb0
a0ed24e
c1d518d
ed12c55
fedbad2
 
fe7b6d8
c1d518d
 
fedbad2
c1d518d
 
fedbad2
c1d518d
 
 
2502de8
c1d518d
 
 
 
 
 
 
 
 
 
fedbad2
c1d518d
fedbad2
 
 
c1d518d
 
fedbad2
c1d518d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432eb0
 
 
 
c1d518d
 
2432eb0
 
 
 
c1d518d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fedbad2
66fd925
ed12c55
 
 
 
c1d518d
 
 
a04b247
c1d518d
 
 
d5f497d
 
3f2277e
6429b4b
 
fedbad2
 
fe7b6d8
fedbad2
 
fe7b6d8
fedbad2
 
fe7b6d8
fedbad2
 
c1d518d
 
 
6429b4b
c1d518d
6429b4b
c1d518d
d5f497d
 
fedbad2
 
fe7b6d8
fedbad2
fe7b6d8
fedbad2
fe7b6d8
c1d518d
d5f497d
 
 
fe7b6d8
d5f497d
fedbad2
d5f497d
c1d518d
fe7b6d8
c1d518d
fe7b6d8
c1d518d
d5f497d
fe7b6d8
a0ed24e
c1d518d
66fd925
a0ed24e
 
 
78ad020
 
a0ed24e
c1d518d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import spaces
import random
import torch
import cv2
import insightface
import gradio as gr
import numpy as np
import os
from huggingface_hub import snapshot_download, login
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from insightface.app import FaceAnalysis

# ---------------------------
# Runtime / device settings
# ---------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32

if HF_TOKEN:
    login(token=HF_TOKEN)
    print("Successfully logged in to Hugging Face Hub")

print("Downloading models...")
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus", token=HF_TOKEN)

print("Loading models on CPU first...")

# ---------------------------
# ChatGLM tokenizer pad fix
# ---------------------------
original_chatglm_pad = ChatGLMTokenizer._pad if hasattr(ChatGLMTokenizer, '_pad') else None
def fixed_pad(self, *args, **kwargs):
    kwargs.pop('padding_side', None)
    if original_chatglm_pad:
        return original_chatglm_pad(self, *args, **kwargs)
    else:
        return super(ChatGLMTokenizer, self)._pad(*args, **kwargs)
ChatGLMTokenizer._pad = fixed_pad

# ---------------------------
# Load Kolors components (dtype fp16 on CUDA, fp32 on CPU)
# ---------------------------
text_encoder = ChatGLMModel.from_pretrained(
    f"{ckpt_dir}/text_encoder",
    torch_dtype=DTYPE,
    trust_remote_code=True
)
tokenizer = ChatGLMTokenizer.from_pretrained(
    f"{ckpt_dir}/text_encoder",
    trust_remote_code=True
)
vae = AutoencoderKL.from_pretrained(
    f"{ckpt_dir}/vae",
    torch_dtype=DTYPE
)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(
    f"{ckpt_dir}/unet",
    torch_dtype=DTYPE
)

# CLIP image encoder + processor
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    "openai/clip-vit-large-patch14-336",
    torch_dtype=DTYPE,
    use_safetensors=True
)
clip_image_processor = CLIPImageProcessor.from_pretrained(
    "openai/clip-vit-large-patch14-336"
)

# Create pipeline (initially on CPU to be safe with memory)
pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    face_clip_encoder=clip_image_encoder,
    face_clip_processor=clip_image_processor,
    force_zeros_for_empty_prompt=False,
)

print("Models loaded successfully!")

# ---------------------------
# InsightFace helper (force CPU provider to avoid CUDA init errors)
# ---------------------------
class FaceInfoGenerator:
    def __init__(self, root_dir: str = "./.insightface/"):
        providers = ["CPUExecutionProvider"]  # GPU ์—†๋Š” ํ™˜๊ฒฝ์—์„œ ์•ˆ์ „
        self.app = FaceAnalysis(
            name="antelopev2",
            root=root_dir,
            providers=providers
        )
        self.app.prepare(ctx_id=0, det_size=(640, 640))

    def get_faceinfo_one_img(self, face_image: Image.Image):
        if face_image is None:
            return None
        # PIL RGB -> OpenCV BGR
        face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
        if len(face_info) == 0:
            return None
        # Largest face
        face_info = sorted(
            face_info,
            key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1])
        )[-1]
        return face_info

def face_bbox_to_square(bbox):
    l, t, r, b = bbox
    cent_x = (l + r) / 2
    cent_y = (t + b) / 2
    w, h = r - l, b - t
    rad = max(w, h) / 2
    return [cent_x - rad, cent_y - rad, cent_x + rad, cent_y + rad]

MAX_SEED = np.iinfo(np.int32).max
face_info_generator = FaceInfoGenerator()

# ---------------------------
# Inference function
# - No @spaces.GPU decorator (GPU ์—†์„ ๋•Œ ์ถฉ๋Œ ๋ฐฉ์ง€)
# - Autocast only on CUDA
# ---------------------------
def infer(
    prompt,
    image=None,
    negative_prompt="low quality, blurry, distorted",
    seed=66,
    randomize_seed=False,
    guidance_scale=5.0,
    num_inference_steps=25
):
    if image is None:
        gr.Warning("Please upload an image with a face.")
        return None, 0

    # Detect face (InsightFace on CPU)
    face_info = face_info_generator.get_faceinfo_one_img(image)
    if face_info is None:
        raise gr.Error("No face detected. Please upload an image with a clear face.")

    # Prepare crop for IP-Adapter FaceID
    face_bbox_square = face_bbox_to_square(face_info["bbox"])
    crop_image = image.crop(face_bbox_square).resize((336, 336))
    crop_image = [crop_image]  # pipeline expects list
    face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))

    # Device move
    device = torch.device(DEVICE)
    global pipe

    # Move modules to device with proper dtype
    pipe.vae = pipe.vae.to(device, dtype=DTYPE)
    pipe.text_encoder = pipe.text_encoder.to(device, dtype=DTYPE)
    pipe.unet = pipe.unet.to(device, dtype=DTYPE)
    pipe.face_clip_encoder = pipe.face_clip_encoder.to(device, dtype=DTYPE)
    face_embeds = face_embeds.to(device, dtype=DTYPE)

    # Load IP-Adapter weights (FaceID Plus)
    pipe.load_ip_adapter_faceid_plus(f"{ckpt_dir_faceid}/ipa-faceid-plus.bin", device=device)
    pipe.set_face_fidelity_scale(0.8)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Inference: autocast only on CUDA
    with torch.no_grad():
        if DEVICE == "cuda":
            with torch.autocast(device_type="cuda", dtype=torch.float16):
                images = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    height=1024,
                    width=1024,
                    num_inference_steps=int(num_inference_steps),
                    guidance_scale=float(guidance_scale),
                    num_images_per_prompt=1,
                    generator=generator,
                    face_crop_image=crop_image,
                    face_insightface_embeds=face_embeds
                ).images
        else:
            images = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=1024,
                width=1024,
                num_inference_steps=int(num_inference_steps),
                guidance_scale=float(guidance_scale),
                num_images_per_prompt=1,
                generator=generator,
                face_crop_image=crop_image,
                face_insightface_embeds=face_embeds
            ).images

    result = images[0]

    # Offload back to CPU to free GPU memory
    try:
        pipe.vae = pipe.vae.to("cpu")
        pipe.text_encoder = pipe.text_encoder.to("cpu")
        pipe.unet = pipe.unet.to("cpu")
        pipe.face_clip_encoder = pipe.face_clip_encoder.to("cpu")
        if DEVICE == "cuda":
            torch.cuda.empty_cache()
    except Exception:
        pass

    return result, seed

# If CUDA is available, optionally wrap with spaces.GPU for scheduling
if torch.cuda.is_available():
    infer = spaces.GPU(duration=120)(infer)

# ---------------------------
# Gradio UI
# ---------------------------
css = """
footer { visibility: hidden; }
#col-left, #col-right { max-width: 640px; margin: 0 auto; }
.gr-button { max-width: 100%; }
"""

with gr.Blocks(theme="soft", css=css) as Kolors:
    gr.HTML(
        """
        <div style='text-align: center;'>
            <h1>๐ŸŽจ Kolors Face ID - AI Portrait Generator</h1>
            <p>Upload a face photo and create stunning AI portraits!</p>
            <div style='display:flex; justify-content:center; gap:12px; margin-top:20px;'>
                <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
                    <img src="https://img.shields.io/badge/OpenFree-BEST%20AI-blue?style=for-the-badge" alt="OpenFree">
                </a>
                <a href="https://discord.gg/openfreeai" target="_blank">
                    <img src="https://img.shields.io/badge/Discord-OpenFree%20AI-purple?style=for-the-badge&logo=discord" alt="Discord">
                </a>
            </div>
            <div style='margin-top:8px;font-size:12px;opacity:.7;'>
                Device: {device}, DType: {dtype}
            </div>
        </div>
        """.format(device=DEVICE.upper(), dtype=str(DTYPE).replace("torch.", ""))
    )

    with gr.Row():
        with gr.Column(elem_id="col-left"):
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Describe the portrait style you want...",
                lines=3,
                value="A professional portrait photo, high quality"
            )
            image = gr.Image(label="Upload Face Image", type="pil", height=300)

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    value="low quality, blurry, distorted"
                )
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=66)
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(label="Guidance", minimum=1, maximum=10, step=0.5, value=5.0)
                num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, step=5, value=25)

            button = gr.Button("๐ŸŽจ Generate Portrait", variant="primary")

        with gr.Column(elem_id="col-right"):
            result = gr.Image(label="Generated Portrait")
            seed_used = gr.Number(label="Seed Used", precision=0)

    button.click(
        fn=infer,
        inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs=[result, seed_used]
    )

if __name__ == "__main__":
    Kolors.queue(max_size=20).launch(debug=True)