File size: 4,940 Bytes
6368661
 
 
 
2ee1f45
6368661
 
 
2ee1f45
6368661
 
 
 
2ee1f45
6368661
 
 
 
 
 
 
 
 
 
 
fd83372
6368661
 
 
 
 
 
 
 
 
 
2ee1f45
6368661
 
 
 
 
 
2ee1f45
6368661
 
2ee1f45
6368661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6774a59
6368661
 
6774a59
6368661
 
6774a59
6368661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# import gradio as gr
# import cv2
# import numpy as np
# import onnxruntime as ort

# # Load the ONNX model using onnxruntime
# onnx_model_path = "Model_IV.onnx"  # Update with your ONNX model path
# session = ort.InferenceSession(onnx_model_path)

# # Function to perform object detection with the ONNX model
# def detect_objects(frame, confidence_threshold=0.5):
#     # Convert the frame from BGR (OpenCV) to RGB
#     image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    
#     # Preprocessing: Resize and normalize the image
#     # Assuming YOLO model input is 640x640, update according to your model's input size
#     input_size = (640, 640)
#     image_resized = cv2.resize(image, input_size)
#     image_normalized = image_resized / 255.0  # Normalize to [0, 1]
#     image_input = np.transpose(image_normalized, (2, 0, 1))  # Change to CHW format
#     image_input = np.expand_dims(image_input, axis=0).astype(np.float32)  # Add batch dimension

#     # Perform inference
#     inputs = {session.get_inputs()[0].name: image_input}
#     outputs = session.run(None, inputs)
    
#     # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
#     # boxes, confidences, class_probs = outputs

#     # # Post-processing: Filter boxes by confidence threshold
#     # detections = []
#     # for i, confidence in enumerate(confidences[0]):
#     #     if confidence >= confidence_threshold:
#     #         x1, y1, x2, y2 = boxes[0][i]
#     #         class_id = np.argmax(class_probs[0][i])  # Get class with highest probability
#     #         detections.append((x1, y1, x2, y2, confidence, class_id))
    
#     # # Draw bounding boxes and labels on the image
#     # for (x1, y1, x2, y2, confidence, class_id) in detections:
#     #     color = (0, 255, 0)  # Green color for bounding boxes
#     #     cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
#     #     label = f"Class {class_id}: {confidence:.2f}"
#     #     cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
    
#     # # Convert the image back to BGR for displaying in Gradio
#     # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    
#     return outputs

# # Gradio interface to use the webcam for real-time object detection
# # Added a slider for the confidence threshold
# iface = gr.Interface(fn=detect_objects, 
#                      #inputs=[
#                          # gr.Video(sources="webcam", type="numpy"),  # Webcam input
#                          inputs = gr.Image(sources=["webcam"], type="numpy"),
#                          # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold")  # Confidence slider
#                      # ],  
#                      outputs="image")  # Show output image with bounding boxes

# iface.launch()

import gradio as gr
import cv2
from huggingface_hub import hf_hub_download
from gradio_webrtc import WebRTC
from twilio.rest import Client
import os
from inference import YOLOv8

model_file = hf_hub_download(
    repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx"
)

model = YOLOv8(model_file)

account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")

if account_sid and auth_token:
    client = Client(account_sid, auth_token)

    token = client.tokens.create()

    rtc_configuration = {
        "iceServers": token.ice_servers,
        "iceTransportPolicy": "relay",
    }
else:
    rtc_configuration = None


def detection(image, conf_threshold=0.3):
    image = cv2.resize(image, (model.input_width, model.input_height))
    new_image = model.detect_objects(image, conf_threshold)
    return cv2.resize(new_image, (500, 500))


css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
                      .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""


with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
    </h1>
    """
    )
    gr.HTML(
        """
        <h3 style='text-align: center'>
        <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
        </h3>
        """
    )
    with gr.Column(elem_classes=["my-column"]):
        with gr.Group(elem_classes=["my-group"]):
            image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
            conf_threshold = gr.Slider(
                label="Confidence Threshold",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.30,
            )

        image.stream(
            fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
        )

if __name__ == "__main__":
    demo.launch()