File size: 8,052 Bytes
6368661
 
 
 
2ee1f45
6368661
 
 
2ee1f45
6368661
 
 
 
2ee1f45
6368661
 
 
 
 
 
 
 
 
 
 
fd83372
6368661
 
 
 
 
 
 
 
 
 
2ee1f45
6368661
 
 
 
 
 
2ee1f45
6368661
 
2ee1f45
6368661
 
 
 
 
 
 
 
 
 
 
 
 
a5fa4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6368661
2b7299f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac724cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db34d43
fb13326
 
 
 
 
8696a37
fb13326
 
 
 
 
 
 
 
 
 
 
ac724cd
fb13326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# import gradio as gr
# import cv2
# import numpy as np
# import onnxruntime as ort

# # Load the ONNX model using onnxruntime
# onnx_model_path = "Model_IV.onnx"  # Update with your ONNX model path
# session = ort.InferenceSession(onnx_model_path)

# # Function to perform object detection with the ONNX model
# def detect_objects(frame, confidence_threshold=0.5):
#     # Convert the frame from BGR (OpenCV) to RGB
#     image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    
#     # Preprocessing: Resize and normalize the image
#     # Assuming YOLO model input is 640x640, update according to your model's input size
#     input_size = (640, 640)
#     image_resized = cv2.resize(image, input_size)
#     image_normalized = image_resized / 255.0  # Normalize to [0, 1]
#     image_input = np.transpose(image_normalized, (2, 0, 1))  # Change to CHW format
#     image_input = np.expand_dims(image_input, axis=0).astype(np.float32)  # Add batch dimension

#     # Perform inference
#     inputs = {session.get_inputs()[0].name: image_input}
#     outputs = session.run(None, inputs)
    
#     # # Assuming YOLO model outputs are in the form of [boxes, confidences, class_probs]
#     # boxes, confidences, class_probs = outputs

#     # # Post-processing: Filter boxes by confidence threshold
#     # detections = []
#     # for i, confidence in enumerate(confidences[0]):
#     #     if confidence >= confidence_threshold:
#     #         x1, y1, x2, y2 = boxes[0][i]
#     #         class_id = np.argmax(class_probs[0][i])  # Get class with highest probability
#     #         detections.append((x1, y1, x2, y2, confidence, class_id))
    
#     # # Draw bounding boxes and labels on the image
#     # for (x1, y1, x2, y2, confidence, class_id) in detections:
#     #     color = (0, 255, 0)  # Green color for bounding boxes
#     #     cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
#     #     label = f"Class {class_id}: {confidence:.2f}"
#     #     cv2.putText(image, label, (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
    
#     # # Convert the image back to BGR for displaying in Gradio
#     # image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    
#     return outputs

# # Gradio interface to use the webcam for real-time object detection
# # Added a slider for the confidence threshold
# iface = gr.Interface(fn=detect_objects, 
#                      #inputs=[
#                          # gr.Video(sources="webcam", type="numpy"),  # Webcam input
#                          inputs = gr.Image(sources=["webcam"], type="numpy"),
#                          # gr.Slider(minimum=0.0, maximum=1.0, default=0.5, label="Confidence Threshold")  # Confidence slider
#                      # ],  
#                      outputs="image")  # Show output image with bounding boxes

# iface.launch()
###
# import gradio as gr
# import cv2
# from huggingface_hub import hf_hub_download
# from gradio_webrtc import WebRTC
# from twilio.rest import Client
# import os
# from inference import YOLOv8

# model_file = hf_hub_download(
#     repo_id="aje6/ASL-Fingerspelling-Detection", filename="onnx/Model_IV.onnx"
# )

# model = YOLOv8(model_file)

# account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
# auth_token = os.environ.get("TWILIO_AUTH_TOKEN")

# if account_sid and auth_token:
#     client = Client(account_sid, auth_token)

#     token = client.tokens.create()

#     rtc_configuration = {
#         "iceServers": token.ice_servers,
#         "iceTransportPolicy": "relay",
#     }
# else:
#     rtc_configuration = None


# def detection(image, conf_threshold=0.3):
#     image = cv2.resize(image, (model.input_width, model.input_height))
#     new_image = model.detect_objects(image, conf_threshold)
#     return cv2.resize(new_image, (500, 500))


# css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
#                       .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""


# with gr.Blocks(css=css) as demo:
#     gr.HTML(
#         """
#     <h1 style='text-align: center'>
#     YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
#     </h1>
#     """
#     )
#     gr.HTML(
#         """
#         <h3 style='text-align: center'>
#         <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
#         </h3>
#         """
#     )
#     with gr.Column(elem_classes=["my-column"]):
#         with gr.Group(elem_classes=["my-group"]):
#             image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
#             conf_threshold = gr.Slider(
#                 label="Confidence Threshold",
#                 minimum=0.0,
#                 maximum=1.0,
#                 step=0.05,
#                 value=0.30,
#             )

#         image.stream(
#             fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
#         )

# if __name__ == "__main__":
#     demo.launch()

# import gradio as gr
# import numpy as np
# import cv2
# from ultralytics import YOLO

# model = YOLO('Model_IV.pt')

# def transform_cv2(frame, transform):
#     if transform == "cartoon":
#         # prepare color
#         img_color = cv2.pyrDown(cv2.pyrDown(frame))
#         for _ in range(6):
#             img_color = cv2.bilateralFilter(img_color, 9, 9, 7)
#         img_color = cv2.pyrUp(cv2.pyrUp(img_color))

#         # prepare edges
#         img_edges = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
#         img_edges = cv2.adaptiveThreshold(
#             cv2.medianBlur(img_edges, 7),
#             255,
#             cv2.ADAPTIVE_THRESH_MEAN_C,
#             cv2.THRESH_BINARY,
#             9,
#             2,
#         )
#         img_edges = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2RGB)
#         # combine color and edges
#         img = cv2.bitwise_and(img_color, img_edges)
#         return img
#     elif transform == "edges":
#         # perform edge detection
#         img = cv2.cvtColor(cv2.Canny(frame, 100, 200), cv2.COLOR_GRAY2BGR)
#         return img
#     else:
#         return np.flipud(frame)

# with gr.Blocks() as demo:
#     with gr.Row():
#         with gr.Column():
#             transform = gr.Dropdown(choices=["cartoon", "edges", "flip"],
#                                     value="flip", label="Transformation")
#             input_img = gr.Image(sources=["webcam"], type="numpy")
#         with gr.Column():
#             output_img = gr.Image(streaming=True)
#         dep = input_img.stream(transform_cv2, [input_img, transform], [output_img],
#                                 time_limit=30, stream_every=0.1, concurrency_limit=30)

# if __name__ == "__main__":
#     demo.launch()

###

# import gradio as gr
# import torch
# import cv2

# # Load the YOLOv8 model
# model = torch.hub.load('ultralytics/yolov8', 'yolov8s', trust_repo=True)
# model.load_state_dict(torch.load('Model_IV'))

# def inference(img):
#     results = model(img)
#     annotated_img = results.render()[0]
#     return annotated_img

# iface = gr.Interface(fn=inference, inputs="webcam", outputs="image")
# iface.launch()

import gradio as gr
import torch
from PIL import Image
import torchvision.transforms as T

# Load your model
model = torch.load("Model_IV.pt")
model.eval()

# Define preprocessing
transform = T.Compose([
    T.Resize((224, 224)),  # Adjust to your model's input size
    T.ToTensor(),
])

def predict(image):
    # Preprocess the image
    img_tensor = transform(image).unsqueeze(0)  # Add batch dimension
    
    # Make prediction
    with torch.no_grad():
        output = model(img_tensor)
    
    # Process output (adjust based on your model's format)
    return output.tolist()  # or post-process the results as needed

# Gradio interface
demo = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="pil"),  # Accepts image input
    outputs="json"  # Customize based on your output format
)

if __name__ == "__main__":
    demo.launch()