Spaces:
Running
Running
File size: 12,302 Bytes
423834f f0df659 f54baf8 423834f f0df659 423834f f54baf8 097598e 423834f 097598e 423834f 097598e 423834f 097598e 423834f 097598e f0df659 423834f f0df659 423834f f0df659 097598e 6ff2c45 423834f f0df659 423834f f0df659 097598e 423834f f0df659 423834f f0df659 423834f f0df659 097598e 423834f 097598e 423834f f0df659 423834f f0df659 097598e 423834f f0df659 f54baf8 f0df659 423834f 097598e f0df659 423834f f0df659 097598e f0df659 423834f f0df659 423834f f0df659 097598e 423834f f0df659 f54baf8 097598e f0df659 f54baf8 097598e f0df659 097598e f0df659 f54baf8 097598e f54baf8 097598e f54baf8 097598e f0df659 f54baf8 097598e f54baf8 097598e f54baf8 097598e f54baf8 097598e f54baf8 f0df659 f54baf8 097598e f0df659 097598e f0df659 097598e f0df659 097598e f0df659 097598e f0df659 423834f 097598e 423834f f0df659 423834f 097598e f0df659 097598e 423834f f0df659 423834f 097598e 423834f 097598e f54baf8 423834f 097598e 423834f f0df659 097598e f0df659 097598e f0df659 097598e f54baf8 f0df659 097598e f54baf8 f0df659 097598e f0df659 f54baf8 097598e f0df659 f54baf8 097598e f0df659 097598e f0df659 f54baf8 097598e 423834f f54baf8 097598e 423834f f0df659 097598e f0df659 423834f 097598e 423834f f0df659 f54baf8 f0df659 423834f f0df659 f54baf8 f0df659 f54baf8 097598e f54baf8 097598e f0df659 097598e f0df659 f54baf8 f0df659 097598e f0df659 097598e f0df659 f54baf8 097598e f54baf8 097598e 423834f 097598e 423834f f54baf8 423834f 097598e f0df659 423834f 097598e f0df659 097598e f0df659 f54baf8 097598e f54baf8 f0df659 097598e f0df659 f54baf8 f0df659 097598e f0df659 423834f 097598e f0df659 f54baf8 f0df659 f54baf8 f0df659 097598e f0df659 097598e f54baf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# src/evaluation.py
import pandas as pd
import numpy as np
from sacrebleu.metrics import BLEU, CHRF
from rouge_score import rouge_scorer
import Levenshtein
from collections import defaultdict
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from typing import Dict, List, Tuple, Optional
from scipy import stats
import warnings
from config import (
ALL_UG40_LANGUAGES,
GOOGLE_SUPPORTED_LANGUAGES,
METRICS_CONFIG,
EVALUATION_TRACKS,
MODEL_CATEGORIES,
)
from src.utils import get_all_language_pairs
warnings.filterwarnings("ignore", category=RuntimeWarning)
def calculate_sentence_metrics(reference: str, prediction: str) -> Dict[str, float]:
"""Calculate all metrics for a single sentence pair."""
# Handle empty predictions
if not prediction or not isinstance(prediction, str):
prediction = ""
if not reference or not isinstance(reference, str):
reference = ""
# Normalize texts
normalizer = BasicTextNormalizer()
pred_norm = normalizer(prediction)
ref_norm = normalizer(reference)
metrics = {}
# BLEU score (0-100 scale)
try:
bleu = BLEU(effective_order=True)
metrics["bleu"] = bleu.sentence_score(pred_norm, [ref_norm]).score
except:
metrics["bleu"] = 0.0
# ChrF score (normalize to 0-1)
try:
chrf = CHRF()
metrics["chrf"] = chrf.sentence_score(pred_norm, [ref_norm]).score / 100.0
except:
metrics["chrf"] = 0.0
# Character Error Rate (CER)
try:
if len(ref_norm) > 0:
metrics["cer"] = Levenshtein.distance(ref_norm, pred_norm) / len(ref_norm)
else:
metrics["cer"] = 1.0 if len(pred_norm) > 0 else 0.0
except:
metrics["cer"] = 1.0
# Word Error Rate (WER)
try:
ref_words = ref_norm.split()
pred_words = pred_norm.split()
if len(ref_words) > 0:
metrics["wer"] = Levenshtein.distance(ref_words, pred_words) / len(ref_words)
else:
metrics["wer"] = 1.0 if len(pred_words) > 0 else 0.0
except:
metrics["wer"] = 1.0
# ROUGE scores
try:
scorer = rouge_scorer.RougeScorer(
["rouge1", "rougeL"], use_stemmer=True
)
rouge_scores = scorer.score(ref_norm, pred_norm)
metrics["rouge1"] = rouge_scores["rouge1"].fmeasure
metrics["rougeL"] = rouge_scores["rougeL"].fmeasure
except:
metrics["rouge1"] = 0.0
metrics["rougeL"] = 0.0
# Quality score (composite metric)
try:
quality_components = [
metrics["bleu"] / 100.0, # Normalize BLEU to 0-1
metrics["chrf"], # Already 0-1
1.0 - min(metrics["cer"], 1.0), # Invert error rates
1.0 - min(metrics["wer"], 1.0),
metrics["rouge1"],
metrics["rougeL"],
]
metrics["quality_score"] = np.mean(quality_components)
except:
metrics["quality_score"] = 0.0
return metrics
def calculate_confidence_interval(values: List[float], confidence_level: float = 0.95) -> Tuple[float, float, float]:
"""Calculate mean and confidence interval for a list of values."""
if not values or len(values) == 0:
return 0.0, 0.0, 0.0
values = np.array(values)
values = values[~np.isnan(values)] # Remove NaN values
if len(values) == 0:
return 0.0, 0.0, 0.0
mean_val = float(np.mean(values))
if len(values) < METRICS_CONFIG["min_samples_for_ci"]:
# Not enough samples for meaningful CI
return mean_val, mean_val, mean_val
try:
# Bootstrap confidence interval
n_bootstrap = min(METRICS_CONFIG["bootstrap_samples"], 1000)
bootstrap_means = []
for _ in range(n_bootstrap):
bootstrap_sample = np.random.choice(values, size=len(values), replace=True)
bootstrap_means.append(np.mean(bootstrap_sample))
alpha = 1 - confidence_level
ci_lower = np.percentile(bootstrap_means, 100 * alpha / 2)
ci_upper = np.percentile(bootstrap_means, 100 * (1 - alpha / 2))
return mean_val, float(ci_lower), float(ci_upper)
except Exception:
# Fallback to t-distribution CI
try:
std_err = stats.sem(values)
h = std_err * stats.t.ppf((1 + confidence_level) / 2, len(values) - 1)
return mean_val, mean_val - h, mean_val + h
except:
return mean_val, mean_val, mean_val
def evaluate_predictions_by_track(
predictions: pd.DataFrame, test_set: pd.DataFrame, track: str
) -> Dict:
"""Evaluate predictions for a specific track."""
print(f"π Evaluating for {track} track...")
track_config = EVALUATION_TRACKS[track]
track_languages = track_config["languages"]
# Filter test set and predictions to track languages
track_test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
].copy()
# Merge predictions with test set
merged = track_test_set.merge(
predictions, on="sample_id", how="inner", suffixes=("", "_pred")
)
if len(merged) == 0:
return {
"error": f"No matching samples found for {track} track",
"evaluated_samples": 0,
"track": track,
}
print(f"π Evaluating {len(merged)} samples for {track} track...")
# Calculate metrics for each sample
sample_metrics = []
for idx, row in merged.iterrows():
metrics = calculate_sentence_metrics(row["target_text"], row["prediction"])
metrics["sample_id"] = row["sample_id"]
metrics["source_language"] = row["source_language"]
metrics["target_language"] = row["target_language"]
sample_metrics.append(metrics)
sample_df = pd.DataFrame(sample_metrics)
# Aggregate by language pairs
pair_metrics = {}
overall_metrics = defaultdict(list)
# Calculate metrics for each language pair
for src_lang in track_languages:
for tgt_lang in track_languages:
if src_lang == tgt_lang:
continue
pair_data = sample_df[
(sample_df["source_language"] == src_lang) &
(sample_df["target_language"] == tgt_lang)
]
if len(pair_data) >= MIN_SAMPLES_PER_PAIR:
pair_key = f"{src_lang}_to_{tgt_lang}"
pair_metrics[pair_key] = {}
# Calculate statistics for each metric
for metric in METRICS_CONFIG["primary_metrics"] + METRICS_CONFIG["secondary_metrics"]:
if metric in pair_data.columns:
values = pair_data[metric].replace([np.inf, -np.inf], np.nan).dropna()
if len(values) > 0:
mean_val, ci_lower, ci_upper = calculate_confidence_interval(values.tolist())
pair_metrics[pair_key][metric] = {
"mean": mean_val,
"ci_lower": ci_lower,
"ci_upper": ci_upper,
"std": float(np.std(values)) if len(values) > 1 else 0.0,
"count": len(values)
}
# Add to overall metrics for track-level statistics
overall_metrics[metric].append(mean_val)
pair_metrics[pair_key]["sample_count"] = len(pair_data)
# Calculate track-level aggregated statistics
track_averages = {}
track_confidence = {}
for metric in overall_metrics:
if overall_metrics[metric]:
mean_val, ci_lower, ci_upper = calculate_confidence_interval(overall_metrics[metric])
track_averages[metric] = mean_val
track_confidence[metric] = {
"mean": mean_val,
"ci_lower": ci_lower,
"ci_upper": ci_upper,
"std": float(np.std(overall_metrics[metric])) if len(overall_metrics[metric]) > 1 else 0.0
}
# Generate evaluation summary
summary = {
"track": track,
"track_name": track_config["name"],
"total_samples": len(sample_df),
"language_pairs_evaluated": len([k for k in pair_metrics if pair_metrics[k].get("sample_count", 0) > 0]),
"languages_covered": len(set(sample_df["source_language"]) | set(sample_df["target_language"])),
"min_samples_per_pair": track_config["min_samples_per_pair"],
}
return {
"pair_metrics": pair_metrics,
"track_averages": track_averages,
"track_confidence": track_confidence,
"summary": summary,
"evaluated_samples": len(sample_df),
"track": track,
"error": None,
}
def evaluate_predictions(
predictions: pd.DataFrame, test_set: pd.DataFrame, model_category: str = "community"
) -> Dict:
"""Comprehensive evaluation across all tracks."""
print("π¬ Starting evaluation...")
# Validate model category
if model_category not in MODEL_CATEGORIES:
model_category = "community"
evaluation_results = {
"model_category": model_category,
"category_info": MODEL_CATEGORIES[model_category],
"tracks": {},
"metadata": {
"evaluation_timestamp": pd.Timestamp.now().isoformat(),
"total_samples_submitted": len(predictions),
"total_samples_available": len(test_set),
},
}
# Evaluate each track
for track_name in EVALUATION_TRACKS.keys():
track_result = evaluate_predictions_by_track(predictions, test_set, track_name)
evaluation_results["tracks"][track_name] = track_result
return evaluation_results
def generate_evaluation_report(results: Dict, model_name: str = "") -> str:
"""Generate a comprehensive evaluation report."""
if any(track_data.get("error") for track_data in results.get("tracks", {}).values()):
return f"β **Evaluation Error**: Unable to complete evaluation"
report = []
# Header
report.append(f"### π¬ Evaluation Report: {model_name or 'Model'}")
report.append("")
# Model categorization
category_info = results.get("category_info", {})
report.append(f"**Model Category**: {category_info.get('name', 'Unknown')}")
report.append("")
# Track-by-track analysis
for track_name, track_data in results.get("tracks", {}).items():
if track_data.get("error"):
continue
track_config = EVALUATION_TRACKS[track_name]
summary = track_data.get("summary", {})
track_averages = track_data.get("track_averages", {})
track_confidence = track_data.get("track_confidence", {})
report.append(f"#### {track_config['name']}")
report.append("")
# Summary statistics
report.append("**Summary Statistics:**")
report.append(f"- **Samples Evaluated**: {summary.get('total_samples', 0):,}")
report.append(f"- **Language Pairs**: {summary.get('language_pairs_evaluated', 0)}")
report.append(f"- **Languages Covered**: {summary.get('languages_covered', 0)}")
report.append("")
# Primary metrics with confidence intervals
report.append("**Primary Metrics (95% Confidence Intervals):**")
for metric in METRICS_CONFIG["primary_metrics"]:
if metric in track_confidence:
stats = track_confidence[metric]
mean_val = stats["mean"]
ci_lower = stats["ci_lower"]
ci_upper = stats["ci_upper"]
report.append(f"- **{metric.upper()}**: {mean_val:.4f} [{ci_lower:.4f}, {ci_upper:.4f}]")
report.append("")
return "\n".join(report)
# Backwards compatibility
MIN_SAMPLES_PER_PAIR = 10 |