File size: 17,293 Bytes
3dcbb9d
cfbcff1
 
 
 
 
3218de7
cfbcff1
 
23201ae
 
 
 
 
 
 
 
 
cfbcff1
23201ae
75faa66
23201ae
 
75faa66
2644208
cfbcff1
 
 
23201ae
2644208
 
 
23201ae
75faa66
 
 
 
 
23201ae
2644208
b9c4788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23201ae
b9c4788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfbcff1
b9c4788
 
 
 
cfbcff1
b9c4788
 
 
23201ae
b9c4788
 
 
23201ae
b9c4788
cfbcff1
23201ae
75faa66
23201ae
 
75faa66
2644208
23201ae
 
2644208
23201ae
2644208
23201ae
 
 
2644208
23201ae
2644208
23201ae
 
2644208
23201ae
 
 
2644208
23201ae
 
 
 
 
 
2644208
23201ae
 
2644208
23201ae
2644208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23201ae
 
 
 
 
 
 
 
 
 
75faa66
 
 
23201ae
2644208
23201ae
 
 
75faa66
 
2644208
cfbcff1
ce626d3
 
 
2644208
b9c4788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce626d3
2644208
b9c4788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644208
 
b9c4788
 
 
2644208
b9c4788
 
 
 
 
 
 
 
 
 
cfbcff1
23201ae
75faa66
 
2644208
75faa66
ce626d3
75faa66
 
 
 
23201ae
2644208
75faa66
 
 
2644208
75faa66
ce626d3
75faa66
 
 
 
ce626d3
2644208
75faa66
cfbcff1
75faa66
 
 
 
cfbcff1
2644208
75faa66
 
 
 
 
 
23201ae
75faa66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644208
23201ae
75faa66
 
23201ae
75faa66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23201ae
75faa66
23201ae
2644208
75faa66
 
cfbcff1
75faa66
2644208
75faa66
 
 
 
 
 
 
 
 
 
cfbcff1
2644208
75faa66
 
 
 
 
cfbcff1
 
23201ae
75faa66
 
2644208
cfbcff1
ce626d3
 
 
2644208
75faa66
2644208
75faa66
 
2644208
75faa66
ce626d3
75faa66
ce626d3
2644208
cfbcff1
2644208
75faa66
23201ae
75faa66
2644208
23201ae
75faa66
 
2644208
75faa66
 
 
 
2644208
75faa66
 
 
2644208
 
75faa66
2644208
 
23201ae
 
cfbcff1
75faa66
 
 
 
23201ae
75faa66
 
ce626d3
2644208
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# src/plotting.py
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
import json
from collections import defaultdict
from typing import Dict, List, Optional, Union
from config import (
    LANGUAGE_NAMES,
    ALL_UG40_LANGUAGES,
    GOOGLE_SUPPORTED_LANGUAGES,
    METRICS_CONFIG,
    EVALUATION_TRACKS,
    MODEL_CATEGORIES,
    CHART_CONFIG,
)


def create_leaderboard_plot(
    df: pd.DataFrame, track: str, metric: str = "quality", top_n: int = 15
) -> go.Figure:
    """Create leaderboard plot with confidence intervals."""
    
    if df.empty:
        fig = go.Figure()
        fig.add_annotation(
            text="No models available for this track",
            xref="paper", yref="paper",
            x=0.5, y=0.5, showarrow=False,
            font=dict(size=16)
        )
        fig.update_layout(
            title=f"No Data Available - {track.title()} Track",
            paper_bgcolor="rgba(0,0,0,0)",
            plot_bgcolor="rgba(0,0,0,0)"
        )
        return fig
    
    try:
        # Get top N models for this track
        metric_col = f"{track}_{metric}"
        ci_lower_col = f"{track}_ci_lower"
        ci_upper_col = f"{track}_ci_upper"
        
        if metric_col not in df.columns:
            fig = go.Figure()
            fig.add_annotation(
                text=f"Metric {metric} not available for {track} track",
                xref="paper", yref="paper",
                x=0.5, y=0.5, showarrow=False,
            )
            return fig
        
        # Ensure numeric columns are properly typed
        numeric_cols = [metric_col, ci_lower_col, ci_upper_col]
        for col in numeric_cols:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
        
        # Filter and sort
        valid_models = df[(df[metric_col] > 0)].head(top_n).copy()
        
        if valid_models.empty:
            fig = go.Figure()
            fig.add_annotation(text="No valid models found", x=0.5, y=0.5, showarrow=False)
            return fig
        
        # Create color mapping by category
        colors = [MODEL_CATEGORIES.get(cat, {}).get("color", "#808080") for cat in valid_models["model_category"]]
        
        # Main bar plot
        fig = go.Figure()
        
        # Add bars with error bars if confidence intervals available
        error_x = None
        if ci_lower_col in valid_models.columns and ci_upper_col in valid_models.columns:
            try:
                error_x = dict(
                    type="data",
                    array=valid_models[ci_upper_col] - valid_models[metric_col],
                    arrayminus=valid_models[metric_col] - valid_models[ci_lower_col],
                    visible=True,
                    thickness=2,
                    width=4,
                )
            except Exception as e:
                print(f"Error creating error bars: {e}")
                error_x = None
        
        # Safely format text values
        try:
            text_values = [f"{float(score):.3f}" for score in valid_models[metric_col]]
        except:
            text_values = ["0.000"] * len(valid_models)
        
        # Safely prepare custom data
        try:
            samples_col = f"{track}_samples"
            samples_data = valid_models.get(samples_col, [0] * len(valid_models))
            customdata = list(zip(
                valid_models["model_category"].fillna("unknown"),
                valid_models["author"].fillna("Anonymous"),
                [int(float(x)) if pd.notnull(x) else 0 for x in samples_data]
            ))
        except Exception as e:
            print(f"Error preparing custom data: {e}")
            customdata = [("unknown", "Anonymous", 0)] * len(valid_models)
        
        fig.add_trace(go.Bar(
            y=valid_models["model_name"],
            x=valid_models[metric_col],
            orientation="h",
            marker=dict(color=colors, line=dict(color="black", width=0.5)),
            error_x=error_x,
            text=text_values,
            textposition="auto",
            hovertemplate=(
                "<b>%{y}</b><br>" +
                f"{metric.title()}: %{{x:.4f}}<br>" +
                "Category: %{customdata[0]}<br>" +
                "Author: %{customdata[1]}<br>" +
                "Samples: %{customdata[2]}<br>" +
                "<extra></extra>"
            ),
            customdata=customdata,
        ))
        
        # Customize layout
        track_info = EVALUATION_TRACKS[track]
        fig.update_layout(
            title=f"πŸ† {track_info['name']} - {metric.title()} Score",
            xaxis_title=f"{metric.title()} Score (with 95% CI)",
            yaxis_title="Models",
            height=max(400, len(valid_models) * 35 + 100),
            margin=dict(l=20, r=20, t=60, b=20),
            paper_bgcolor="rgba(0,0,0,0)",
            plot_bgcolor="rgba(0,0,0,0)",
            font=dict(size=12),
        )
        
        # Reverse y-axis to show best model at top
        fig.update_yaxes(autorange="reversed")
        
        return fig
        
    except Exception as e:
        print(f"Error creating leaderboard plot: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text=f"Error creating plot: {str(e)}",
            x=0.5, y=0.5, showarrow=False
        )
        return fig


def create_language_pair_heatmap(
    model_results: Dict, track: str, metric: str = "quality_score"
) -> go.Figure:
    """Create language pair heatmap for a model."""
    
    if not model_results or "tracks" not in model_results:
        fig = go.Figure()
        fig.add_annotation(text="No model results available", x=0.5, y=0.5, showarrow=False)
        return fig
    
    track_data = model_results["tracks"].get(track, {})
    if track_data.get("error") or "pair_metrics" not in track_data:
        fig = go.Figure()
        fig.add_annotation(text=f"No data available for {track} track", x=0.5, y=0.5, showarrow=False)
        return fig
    
    pair_metrics = track_data["pair_metrics"]
    track_languages = EVALUATION_TRACKS[track]["languages"]
    
    # Create matrix for heatmap
    n_langs = len(track_languages)
    matrix = np.full((n_langs, n_langs), np.nan)
    
    for i, src_lang in enumerate(track_languages):
        for j, tgt_lang in enumerate(track_languages):
            if src_lang != tgt_lang:
                pair_key = f"{src_lang}_to_{tgt_lang}"
                if pair_key in pair_metrics and metric in pair_metrics[pair_key]:
                    matrix[i, j] = pair_metrics[pair_key][metric]["mean"]
    
    # Create language labels
    lang_labels = [LANGUAGE_NAMES.get(lang, lang.upper()) for lang in track_languages]
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=matrix,
        x=lang_labels,
        y=lang_labels,
        colorscale="Viridis",
        showscale=True,
        colorbar=dict(
            title=f"{metric.replace('_', ' ').title()}",
            titleside="right",
            len=0.8,
        ),
        hovertemplate=(
            "Source: %{y}<br>" +
            "Target: %{x}<br>" +
            f"{metric.replace('_', ' ').title()}: %{{z:.3f}}<br>" +
            "<extra></extra>"
        ),
        zmin=0,
        zmax=1 if metric == "quality_score" else None,
    ))
    
    # Customize layout
    track_info = EVALUATION_TRACKS[track]
    fig.update_layout(
        title=f"πŸ—ΊοΈ {track_info['name']} - {metric.replace('_', ' ').title()} by Language Pair",
        xaxis_title="Target Language",
        yaxis_title="Source Language",
        height=600,
        width=700,
        font=dict(size=12),
        xaxis=dict(side="bottom"),
        yaxis=dict(autorange="reversed"),
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
    )
    
    return fig


def create_performance_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
    """Create performance comparison plot showing confidence intervals."""
    
    if df.empty:
        fig = go.Figure()
        fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
        return fig
    
    try:
        metric_col = f"{track}_quality"
        ci_lower_col = f"{track}_ci_lower"
        ci_upper_col = f"{track}_ci_upper"
        
        # Ensure numeric columns are properly typed
        numeric_cols = [metric_col, ci_lower_col, ci_upper_col]
        for col in numeric_cols:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
        
        # Filter to models with data for this track
        valid_models = df[
            (df[metric_col] > 0) & 
            (df[ci_lower_col].notna()) & 
            (df[ci_upper_col].notna())
        ].head(10).copy()
        
        if valid_models.empty:
            fig = go.Figure()
            fig.add_annotation(text="No models with confidence intervals", x=0.5, y=0.5, showarrow=False)
            return fig
        
        fig = go.Figure()
        
        # Add confidence intervals as error bars
        for i, (_, model) in enumerate(valid_models.iterrows()):
            try:
                category = str(model["model_category"])
                color = MODEL_CATEGORIES.get(category, {}).get("color", "#808080")
                model_name = str(model["model_name"])
                
                # Safely extract numeric values
                quality_val = float(model[metric_col])
                ci_lower_val = float(model[ci_lower_col])
                ci_upper_val = float(model[ci_upper_col])
                
                # Main point
                fig.add_trace(go.Scatter(
                    x=[quality_val],
                    y=[i],
                    mode="markers",
                    marker=dict(
                        size=12,
                        color=color,
                        line=dict(color="black", width=1),
                    ),
                    name=model_name,
                    showlegend=False,
                    hovertemplate=(
                        f"<b>{model_name}</b><br>" +
                        f"Quality: {quality_val:.4f}<br>" +
                        f"95% CI: [{ci_lower_val:.4f}, {ci_upper_val:.4f}]<br>" +
                        f"Category: {category}<br>" +
                        "<extra></extra>"
                    ),
                ))
                
                # Confidence interval line
                fig.add_trace(go.Scatter(
                    x=[ci_lower_val, ci_upper_val],
                    y=[i, i],
                    mode="lines",
                    line=dict(color=color, width=3),
                    showlegend=False,
                    hoverinfo="skip",
                ))
                
            except Exception as e:
                print(f"Error adding model {i} to comparison plot: {e}")
                continue
        
        # Safely prepare tick labels
        try:
            tick_labels = [str(name) for name in valid_models["model_name"]]
        except:
            tick_labels = [f"Model {i}" for i in range(len(valid_models))]
        
        # Customize layout
        track_info = EVALUATION_TRACKS[track]
        fig.update_layout(
            title=f"πŸ“Š {track_info['name']} - Performance Comparison",
            xaxis_title="Quality Score",
            yaxis_title="Models",
            height=max(400, len(valid_models) * 40 + 100),
            yaxis=dict(
                tickmode="array",
                tickvals=list(range(len(valid_models))),
                ticktext=tick_labels,
                autorange="reversed",
            ),
            showlegend=False,
            paper_bgcolor="rgba(0,0,0,0)",
            plot_bgcolor="rgba(0,0,0,0)",
        )
        
        return fig
        
    except Exception as e:
        print(f"Error creating performance comparison plot: {e}")
        fig = go.Figure()
        fig.add_annotation(
            text=f"Error creating plot: {str(e)}",
            x=0.5, y=0.5, showarrow=False
        )
        return fig


def create_language_pair_comparison_plot(pairs_df: pd.DataFrame, track: str) -> go.Figure:
    """Create language pair comparison plot showing all models across all pairs."""
    
    if pairs_df.empty:
        fig = go.Figure()
        fig.add_annotation(
            text="No language pair data available", 
            x=0.5, y=0.5, showarrow=False
        )
        return fig
    
    # Get unique language pairs and models
    language_pairs = sorted(pairs_df['Language Pair'].unique())
    models = sorted(pairs_df['Model'].unique())
    
    if len(language_pairs) == 0 or len(models) == 0:
        fig = go.Figure()
        fig.add_annotation(
            text="Insufficient data for comparison", 
            x=0.5, y=0.5, showarrow=False
        )
        return fig
    
    # Create subplot for each metric
    fig = make_subplots(
        rows=2, cols=1,
        subplot_titles=('Quality Score by Language Pair', 'BLEU Score by Language Pair'),
        vertical_spacing=0.1,
        shared_xaxes=True
    )
    
    # Quality Score comparison
    for model in models:
        model_data = pairs_df[pairs_df['Model'] == model]
        category = model_data['Category'].iloc[0] if not model_data.empty else 'community'
        color = MODEL_CATEGORIES.get(category, {}).get('color', '#808080')
        
        fig.add_trace(
            go.Bar(
                name=model,
                x=model_data['Language Pair'],
                y=model_data['Quality Score'],
                marker_color=color,
                opacity=0.8,
                legendgroup=model,
                showlegend=True,
                hovertemplate=(
                    f"<b>{model}</b><br>" +
                    "Language Pair: %{x}<br>" +
                    "Quality Score: %{y:.4f}<br>" +
                    f"Category: {category}<br>" +
                    "<extra></extra>"
                )
            ),
            row=1, col=1
        )
        
        # BLEU Score comparison
        fig.add_trace(
            go.Bar(
                name=model,
                x=model_data['Language Pair'],
                y=model_data['BLEU'],
                marker_color=color,
                opacity=0.8,
                legendgroup=model,
                showlegend=False,
                hovertemplate=(
                    f"<b>{model}</b><br>" +
                    "Language Pair: %{x}<br>" +
                    "BLEU: %{y:.2f}<br>" +
                    f"Category: {category}<br>" +
                    "<extra></extra>"
                )
            ),
            row=2, col=1
        )
    
    # Update layout
    track_info = EVALUATION_TRACKS[track]
    fig.update_layout(
        title=f"πŸ“Š {track_info['name']} - Language Pair Performance Comparison",
        height=800,
        barmode='group',
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        )
    )
    
    # Rotate x-axis labels for better readability
    fig.update_xaxes(tickangle=45, row=2, col=1)
    fig.update_yaxes(title_text="Quality Score", row=1, col=1)
    fig.update_yaxes(title_text="BLEU Score", row=2, col=1)
    
    return fig


def create_category_comparison_plot(df: pd.DataFrame, track: str) -> go.Figure:
    """Create category-wise comparison plot."""
    
    if df.empty:
        fig = go.Figure()
        fig.add_annotation(text="No data available", x=0.5, y=0.5, showarrow=False)
        return fig
    
    metric_col = f"{track}_quality"
    
    # Filter to models with data
    valid_models = df[df[metric_col] > 0]
    
    if valid_models.empty:
        fig = go.Figure()
        fig.add_annotation(text="No valid models found", x=0.5, y=0.5, showarrow=False)
        return fig
    
    fig = go.Figure()
    
    # Create box plot for each category
    for category, info in MODEL_CATEGORIES.items():
        category_models = valid_models[valid_models["model_category"] == category]
        
        if len(category_models) > 0:
            fig.add_trace(go.Box(
                y=category_models[metric_col],
                name=info["name"],
                marker_color=info["color"],
                boxpoints="all",  # Show all points
                jitter=0.3,
                pointpos=-1.8,
                hovertemplate=(
                    f"<b>{info['name']}</b><br>" +
                    "Quality: %{y:.4f}<br>" +
                    "Model: %{customdata}<br>" +
                    "<extra></extra>"
                ),
                customdata=category_models["model_name"],
            ))
    
    # Customize layout
    track_info = EVALUATION_TRACKS[track]
    fig.update_layout(
        title=f"πŸ“ˆ {track_info['name']} - Performance by Category",
        xaxis_title="Model Category",
        yaxis_title="Quality Score",
        height=500,
        showlegend=False,
        paper_bgcolor="rgba(0,0,0,0)",
        plot_bgcolor="rgba(0,0,0,0)",
    )
    
    return fig