Spaces:
Running
Running
File size: 16,086 Bytes
4fa2f10 ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 7827065 62d1d8a 4fa2f10 ce36131 4fa2f10 ce36131 4fa2f10 ce36131 4fa2f10 62d1d8a 4fa2f10 ce36131 4fa2f10 ce36131 4fa2f10 62d1d8a 4fa2f10 ce36131 62d1d8a 7827065 ce36131 62d1d8a 4fa2f10 ce36131 62d1d8a ce36131 62d1d8a 4fa2f10 ce36131 4fa2f10 62d1d8a ce36131 7827065 ce36131 62d1d8a ce36131 62d1d8a ce36131 4fa2f10 ce36131 4fa2f10 62d1d8a 4fa2f10 ce36131 4fa2f10 62d1d8a 4fa2f10 ce36131 7827065 62d1d8a 4fa2f10 ce36131 62d1d8a ce36131 4fa2f10 62d1d8a ce36131 62d1d8a 4fa2f10 ce36131 62d1d8a 4fa2f10 ce36131 4fa2f10 62d1d8a 7827065 ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a 4fa2f10 ce36131 4fa2f10 ce36131 7827065 ce36131 7827065 62d1d8a 4fa2f10 ce36131 62d1d8a ce36131 4fa2f10 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 62d1d8a 4fa2f10 ce36131 7827065 4fa2f10 ce36131 4fa2f10 ce36131 4fa2f10 7827065 62d1d8a 4fa2f10 62d1d8a 4fa2f10 7827065 ce36131 62d1d8a ce36131 62d1d8a ce36131 4fa2f10 62d1d8a 4fa2f10 ce36131 4fa2f10 62d1d8a ce36131 62d1d8a ce36131 4fa2f10 62d1d8a ce36131 4fa2f10 62d1d8a ce36131 62d1d8a ce36131 62d1d8a ce36131 4fa2f10 ce36131 62d1d8a ce36131 62d1d8a ce36131 7827065 62d1d8a ce36131 62d1d8a ce36131 7827065 62d1d8a ce36131 62d1d8a ce36131 62d1d8a 4fa2f10 ce36131 62d1d8a 7827065 ce36131 62d1d8a 2275510 ce36131 7827065 2275510 ce36131 7827065 4fa2f10 2275510 62d1d8a 4fa2f10 ce36131 7827065 62d1d8a ce36131 62d1d8a ce36131 7827065 62d1d8a ce36131 62d1d8a 7827065 ce36131 4fa2f10 ce36131 7827065 ce36131 7827065 ce36131 4fa2f10 62d1d8a ce36131 62d1d8a 7827065 62d1d8a 7827065 62d1d8a 7827065 ce36131 62d1d8a 7827065 62d1d8a 7827065 4fa2f10 62d1d8a 7827065 62d1d8a 7827065 62d1d8a 4fa2f10 7827065 ce36131 62d1d8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# src/validation.py
import pandas as pd
import numpy as np
from typing import Dict, List, Tuple, Optional
import json
import io
import re
from config import (
PREDICTION_FORMAT,
VALIDATION_CONFIG,
MODEL_CATEGORIES,
EVALUATION_TRACKS,
ALL_UG40_LANGUAGES,
)
def detect_model_category(model_name: str, author: str, description: str) -> str:
"""Automatically detect model category based on name and metadata."""
# Combine all text for analysis
text_to_analyze = f"{model_name} {author} {description}".lower()
# Category detection patterns
detection_patterns = PREDICTION_FORMAT["category_detection"]
# Check for specific patterns
if any(pattern in text_to_analyze for pattern in detection_patterns.get("google", [])):
return "commercial"
if any(pattern in text_to_analyze for pattern in detection_patterns.get("nllb", [])):
return "research"
if any(pattern in text_to_analyze for pattern in detection_patterns.get("m2m", [])):
return "research"
if any(pattern in text_to_analyze for pattern in detection_patterns.get("baseline", [])):
return "baseline"
# Check for research indicators
research_indicators = [
"university", "research", "paper", "arxiv", "acl", "emnlp", "naacl",
"transformer", "bert", "gpt", "t5", "mbart", "academic"
]
if any(indicator in text_to_analyze for indicator in research_indicators):
return "research"
# Check for commercial indicators
commercial_indicators = [
"google", "microsoft", "azure", "aws", "openai", "anthropic",
"commercial", "api", "cloud", "translate"
]
if any(indicator in text_to_analyze for indicator in commercial_indicators):
return "commercial"
# Default to community
return "community"
def validate_file_format(file_content: bytes, filename: str) -> Dict:
"""Validate file format and structure."""
try:
# Determine file type
if filename.endswith(".csv"):
df = pd.read_csv(io.BytesIO(file_content))
elif filename.endswith(".tsv"):
df = pd.read_csv(io.BytesIO(file_content), sep="\t")
elif filename.endswith(".json"):
data = json.loads(file_content.decode("utf-8"))
df = pd.DataFrame(data)
else:
return {
"valid": False,
"error": f"Unsupported file type. Use: {', '.join(PREDICTION_FORMAT['file_types'])}",
}
# Check required columns
missing_cols = set(PREDICTION_FORMAT["required_columns"]) - set(df.columns)
if missing_cols:
return {
"valid": False,
"error": f"Missing required columns: {', '.join(missing_cols)}",
}
# Basic data validation
if len(df) == 0:
return {"valid": False, "error": "File is empty"}
# Validation checks
validation_issues = []
# Check for required data
if df["sample_id"].isna().any():
validation_issues.append("Missing sample_id values found")
if df["prediction"].isna().any():
na_count = df["prediction"].isna().sum()
validation_issues.append(f"Missing prediction values found ({na_count} empty predictions)")
# Check for duplicates
duplicates = df["sample_id"].duplicated()
if duplicates.any():
dup_count = duplicates.sum()
validation_issues.append(f"Duplicate sample_id values found ({dup_count} duplicates)")
# Data type validation
if not df["sample_id"].dtype == "object":
df["sample_id"] = df["sample_id"].astype(str)
# Check sample_id format
invalid_ids = ~df["sample_id"].str.match(r"salt_\d{6}", na=False)
if invalid_ids.any():
invalid_count = invalid_ids.sum()
validation_issues.append(f"Invalid sample_id format found ({invalid_count} invalid IDs)")
# Return results
if validation_issues:
return {
"valid": False,
"error": "; ".join(validation_issues),
"dataframe": df,
"row_count": len(df),
"columns": list(df.columns),
}
return {
"valid": True,
"dataframe": df,
"row_count": len(df),
"columns": list(df.columns),
}
except Exception as e:
return {"valid": False, "error": f"Error parsing file: {str(e)}"}
def validate_predictions_content(predictions: pd.DataFrame) -> Dict:
"""Validate prediction content quality."""
issues = []
warnings = []
quality_metrics = {}
# Basic content checks
empty_predictions = predictions["prediction"].str.strip().eq("").sum()
if empty_predictions > 0:
issues.append(f"{empty_predictions} empty predictions found")
# Length analysis
pred_lengths = predictions["prediction"].str.len()
quality_metrics["avg_length"] = float(pred_lengths.mean())
quality_metrics["std_length"] = float(pred_lengths.std())
# Check for suspiciously short predictions
short_predictions = (pred_lengths < 3).sum()
if short_predictions > len(predictions) * 0.05: # More than 5%
issues.append(f"{short_predictions} very short predictions (< 3 characters)")
# Check for suspiciously long predictions
long_predictions = (pred_lengths > 500).sum()
if long_predictions > len(predictions) * 0.01: # More than 1%
warnings.append(f"{long_predictions} very long predictions (> 500 characters)")
# Check for repeated predictions
duplicate_predictions = predictions["prediction"].duplicated().sum()
duplicate_rate = duplicate_predictions / len(predictions)
quality_metrics["duplicate_rate"] = float(duplicate_rate)
if duplicate_rate > VALIDATION_CONFIG["quality_thresholds"]["max_duplicate_rate"]:
issues.append(f"{duplicate_predictions} duplicate prediction texts ({duplicate_rate:.1%})")
# Check for placeholder text
placeholder_patterns = [
r"^(test|placeholder|todo|xxx|aaa|bbb)$",
r"^[a-z]{1,3}$", # Very short gibberish
r"^\d+$", # Just numbers
r"^[^\w\s]*$", # Only punctuation
]
placeholder_count = 0
for pattern in placeholder_patterns:
placeholder_matches = predictions["prediction"].str.match(pattern, flags=re.IGNORECASE, na=False).sum()
placeholder_count += placeholder_matches
if placeholder_count > len(predictions) * 0.02: # More than 2%
issues.append(f"{placeholder_count} placeholder-like predictions detected")
# Calculate overall quality score
quality_score = 1.0
quality_score -= len(issues) * 0.3 # Major penalty for issues
quality_score -= len(warnings) * 0.1 # Minor penalty for warnings
quality_score -= max(0, duplicate_rate - 0.05) * 2 # Penalty for excessive duplicates
# Length appropriateness
if quality_metrics["avg_length"] < VALIDATION_CONFIG["quality_thresholds"]["min_avg_length"]:
quality_score -= 0.2
elif quality_metrics["avg_length"] > VALIDATION_CONFIG["quality_thresholds"]["max_avg_length"]:
quality_score -= 0.1
quality_score = max(0.0, min(1.0, quality_score))
return {
"has_issues": len(issues) > 0,
"issues": issues,
"warnings": warnings,
"quality_score": quality_score,
"quality_metrics": quality_metrics,
}
def validate_against_test_set(
predictions: pd.DataFrame, test_set: pd.DataFrame
) -> Dict:
"""Validate predictions against test set."""
# Convert IDs to string for comparison
pred_ids = set(predictions["sample_id"].astype(str))
test_ids = set(test_set["sample_id"].astype(str))
# Check overall coverage
missing_ids = test_ids - pred_ids
extra_ids = pred_ids - test_ids
matching_ids = pred_ids & test_ids
overall_coverage = len(matching_ids) / len(test_ids)
# Track-specific coverage analysis
track_coverage = {}
for track_name, track_config in EVALUATION_TRACKS.items():
track_languages = track_config["languages"]
# Filter test set to track languages
track_test_set = test_set[
(test_set["source_language"].isin(track_languages)) &
(test_set["target_language"].isin(track_languages))
]
if len(track_test_set) == 0:
continue
track_test_ids = set(track_test_set["sample_id"].astype(str))
track_matching_ids = pred_ids & track_test_ids
track_coverage[track_name] = {
"total_samples": len(track_test_set),
"covered_samples": len(track_matching_ids),
"coverage_rate": len(track_matching_ids) / len(track_test_set),
"meets_minimum": len(track_matching_ids) >= VALIDATION_CONFIG["min_samples_per_track"][track_name],
"min_required": VALIDATION_CONFIG["min_samples_per_track"][track_name],
}
# Missing rate validation
missing_rate = len(missing_ids) / len(test_ids)
meets_missing_threshold = missing_rate <= VALIDATION_CONFIG["max_missing_rate"]
return {
"overall_coverage": overall_coverage,
"missing_count": len(missing_ids),
"extra_count": len(extra_ids),
"matching_count": len(matching_ids),
"missing_rate": missing_rate,
"meets_missing_threshold": meets_missing_threshold,
"is_complete": overall_coverage == 1.0,
"track_coverage": track_coverage,
"missing_ids_sample": list(missing_ids)[:10],
"extra_ids_sample": list(extra_ids)[:10],
}
def generate_validation_report(
format_result: Dict,
content_result: Dict,
test_set_result: Dict,
model_name: str = "",
detected_category: str = "community",
) -> str:
"""Generate comprehensive validation report."""
report = []
# Header
report.append(f"### π¬ Validation Report: {model_name or 'Submission'}")
report.append("")
# Model categorization
category_info = MODEL_CATEGORIES.get(detected_category, MODEL_CATEGORIES["community"])
report.append(f"**Detected Model Category**: {category_info['name']}")
report.append("")
# File format validation
if format_result["valid"]:
report.append("β
**File Format**: Valid")
report.append(f" - Rows: {format_result['row_count']:,}")
report.append(f" - Columns: {', '.join(format_result['columns'])}")
else:
report.append("β **File Format**: Invalid")
report.append(f" - Error: {format_result['error']}")
return "\n".join(report)
# Content quality validation
quality_score = content_result.get("quality_score", 0.0)
if content_result["has_issues"]:
report.append("β **Content Quality**: Issues Found")
for issue in content_result["issues"]:
report.append(f" - β {issue}")
else:
report.append("β
**Content Quality**: Good")
if content_result["warnings"]:
for warning in content_result["warnings"]:
report.append(f" - β οΈ {warning}")
report.append(f" - **Quality Score**: {quality_score:.2f}/1.00")
report.append("")
# Test set coverage validation
overall_coverage = test_set_result["overall_coverage"]
meets_threshold = test_set_result["meets_missing_threshold"]
if overall_coverage == 1.0:
report.append("β
**Test Set Coverage**: Complete")
elif overall_coverage >= 0.95 and meets_threshold:
report.append("β
**Test Set Coverage**: Adequate")
else:
report.append("β **Test Set Coverage**: Insufficient")
report.append(f" - Coverage: {overall_coverage:.1%} ({test_set_result['matching_count']:,} / {test_set_result['matching_count'] + test_set_result['missing_count']:,})")
report.append(f" - Missing Rate: {test_set_result['missing_rate']:.1%}")
report.append("")
# Track-specific coverage analysis
report.append("#### π Track-Specific Analysis")
track_coverage = test_set_result.get("track_coverage", {})
for track_name, coverage_info in track_coverage.items():
track_config = EVALUATION_TRACKS[track_name]
status = "β
" if coverage_info["meets_minimum"] else "β"
report.append(f"**{status} {track_config['name']}**:")
report.append(f" - **Samples**: {coverage_info['covered_samples']:,} / {coverage_info['total_samples']:,}")
report.append(f" - **Coverage**: {coverage_info['coverage_rate']:.1%}")
report.append(f" - **Minimum Required**: {coverage_info['min_required']:,}")
report.append(f" - **Status**: {'Adequate' if coverage_info['meets_minimum'] else 'Insufficient'}")
report.append("")
# Final verdict
all_checks_pass = (
format_result["valid"] and
not content_result["has_issues"] and
overall_coverage >= 0.95 and
meets_threshold
)
can_evaluate_with_limits = (
format_result["valid"] and
overall_coverage >= 0.8 and
not any("β" in issue for issue in content_result.get("issues", []))
)
if all_checks_pass:
report.append("π **Final Verdict**: Ready for evaluation!")
elif can_evaluate_with_limits:
report.append("β οΈ **Final Verdict**: Can be evaluated with limitations")
report.append(" - Results will include notes about limitations")
else:
report.append("β **Final Verdict**: Please address critical issues before submission")
return "\n".join(report)
def validate_submission(
file_content: bytes,
filename: str,
test_set: pd.DataFrame,
model_name: str = "",
author: str = "",
description: str = ""
) -> Dict:
"""Complete validation pipeline for submissions."""
# Step 1: Detect model category
detected_category = detect_model_category(model_name, author, description)
# Step 2: File format validation
format_result = validate_file_format(file_content, filename)
if not format_result["valid"]:
return {
"valid": False,
"can_evaluate": False,
"category": detected_category,
"report": generate_validation_report(
format_result, {}, {}, model_name, detected_category
),
"predictions": None,
}
predictions = format_result["dataframe"]
# Step 3: Content validation
content_result = validate_predictions_content(predictions)
# Step 4: Test set validation
test_set_result = validate_against_test_set(predictions, test_set)
# Step 5: Generate report
report = generate_validation_report(
format_result, content_result, test_set_result, model_name, detected_category
)
# Overall validity determination
is_valid = (
format_result["valid"] and
not content_result["has_issues"] and
test_set_result["overall_coverage"] >= 0.95 and
test_set_result["meets_missing_threshold"]
)
# Evaluation eligibility (more permissive)
can_evaluate = (
format_result["valid"] and
test_set_result["overall_coverage"] >= 0.8 and
not any("β" in issue for issue in content_result.get("issues", []))
)
return {
"valid": is_valid,
"can_evaluate": can_evaluate,
"category": detected_category,
"coverage": test_set_result["overall_coverage"],
"report": report,
"predictions": predictions,
"quality_score": content_result.get("quality_score", 0.8),
"track_coverage": test_set_result.get("track_coverage", {}),
} |