|
""" |
|
ResNet in PyTorch. |
|
For Pre-activation ResNet, see 'preact_resnet.py'. |
|
|
|
Reference: |
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun |
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385 |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import pytorch_lightning as pl |
|
from torchmetrics.functional import accuracy |
|
from torchvision import transforms |
|
from torch.utils.data import DataLoader |
|
from torchvision.datasets import CIFAR10 |
|
import albumentations as A |
|
from albumentations.pytorch import ToTensorV2 |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class LitResNet(pl.LightningModule): |
|
def __init__(self, block, num_blocks, num_classes=10,batch_size=128): |
|
super(LitResNet, self).__init__() |
|
self.batch_size = batch_size |
|
self.in_planes = 64 |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.linear = nn.Linear(512*block.expansion, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
|
|
loss = F.cross_entropy(y_hat, y) |
|
|
|
acc = accuracy(y_hat, y) |
|
self.log_dict( |
|
{"train_loss": loss, "train_acc": acc}, |
|
on_step=True, |
|
on_epoch=True, |
|
prog_bar=True, |
|
logger=True, |
|
) |
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
loss = F.cross_entropy(y_hat, y) |
|
acc = accuracy(y_hat, y) |
|
self.log_dict( |
|
{"val_loss": loss, "val_acc": acc}, |
|
on_step=True, |
|
on_epoch=True, |
|
prog_bar=True, |
|
logger=True, |
|
) |
|
return loss |
|
|
|
def test_step(self, batch, batch_idx): |
|
x, y = batch |
|
y_hat = self(x) |
|
|
|
argmax_pred = y_hat.argmax(dim=1).cpu() |
|
loss = F.cross_entropy(y_hat, y) |
|
acc = accuracy(y_hat, y) |
|
self.log_dict( |
|
{"test_loss": loss, "test_acc": acc}, |
|
on_step=True, |
|
on_epoch=True, |
|
prog_bar=True, |
|
logger=True, |
|
) |
|
|
|
|
|
self.confusion_matrix.update(y_hat, y) |
|
|
|
|
|
x, y, y_hat, argmax_pred = ( |
|
x.cpu(), |
|
y.cpu(), |
|
y_hat.cpu(), |
|
argmax_pred.cpu(), |
|
) |
|
self.pred_store["test_preds"] = torch.cat( |
|
(self.pred_store["test_preds"], argmax_pred), dim=0 |
|
) |
|
self.pred_store["test_labels"] = torch.cat( |
|
(self.pred_store["test_labels"], y), dim=0 |
|
) |
|
for d, t, p, o in zip(x, y, argmax_pred, y_hat): |
|
if p.eq(t.view_as(p)).item() == False: |
|
self.pred_store["test_incorrect"].append( |
|
(d.cpu(), t, p, o[p.item()].cpu()) |
|
) |
|
|
|
return loss |
|
|
|
|
|
def configure_optimizers(self): |
|
return torch.optim.Adam(self.parameters(), lr=0.02) |
|
|
|
def LitResNet18(): |
|
return LitResNet(BasicBlock, [2, 2, 2, 2]) |
|
|
|
def LitResNet34(): |
|
return LitResNet(BasicBlock, [3, 4, 6, 3]) |
|
|
|
|
|
|
|
|
|
|