Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from PIL import Image | |
from rembg import remove | |
# import spaces #[uncomment to use ZeroGPU] | |
from peft import PeftModel | |
from diffusers import DiffusionPipeline, StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, DDIMScheduler | |
from diffusers.utils import load_image | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "CompVis/stable-diffusion-v1-4" # Replace to the model you would like to use | |
torch_dtype = torch.float16 | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") | |
pipe = pipe.to(device) | |
# pipe.unet = PeftModel.from_pretrained(pipe.unet, "alexanz/SD14_lora_pusheen") | |
pipe.safety_checker = None | |
pipe.requires_safety_checker = False | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 512 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def load_model(model_id, lora_strength, use_controlnet=False, control_mode="edge_detection", use_ip_adapter=False, control_strength_ip=0.0, | |
acceleration_mode=None): | |
global pipe | |
if pipe is not None: | |
del pipe | |
torch.cuda.empty_cache() | |
try: | |
if control_mode == "edge_detection" and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch_dtype) | |
elif control_mode == "pose_estimation"and (model_id == "CompVis/stable-diffusion-v1-4" or model_id == "alexanz/SD14_lora_pusheen"): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype) | |
if control_mode == "edge_detection" and (model_id == "alexanz/SD15_lora_pusheen"): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype) | |
elif control_mode == "pose_estimation"and (model_id == "alexanz/SD15_lora_pusheen"): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype) | |
if model_id == "CompVis/stable-diffusion-v1-4": | |
if use_controlnet: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
model_id, | |
safety_checker=None, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype | |
) | |
else: | |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) | |
elif model_id == "alexanz/SD14_lora_pusheen": | |
if use_controlnet: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
safety_checker=None, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype | |
) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id) | |
elif model_id == "alexanz/SD15_lora_pusheen": | |
if use_controlnet: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
safety_checker=None, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype | |
) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id, torch_dtype=torch_dtype) | |
else: | |
if acceleration_mode is None: | |
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, model_id) | |
elif acceleration_mode == "distilled": | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, | |
) | |
elif acceleration_mode == "distilled + tiny": | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, | |
) | |
pipe.vae = AutoencoderTiny.from_pretrained( | |
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True, | |
) | |
elif acceleration_mode == "DDIM": | |
scheduler = DDIMScheduler.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="scheduler") | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", scheduler=scheduler, torch_dtype=torch.float16 | |
) | |
if use_ip_adapter: | |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") | |
pipe.set_ip_adapter_scale(control_strength_ip) | |
pipe = pipe.to(device) | |
pipe.safety_checker = None | |
pipe.requires_safety_checker = False | |
pipe.enable_model_cpu_offload() | |
return f"Model {model_id} loaded with ControlNet: {use_controlnet}, mode: {control_mode}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
lora_strength, | |
guidance_scale, | |
num_inference_steps, | |
use_controlnet, | |
control_image_cont, | |
control_strength_cont, | |
model_dropdown, | |
control_mode, | |
use_ip_adapter, | |
control_strength_ip, | |
control_image_ip, | |
use_rmbg, | |
acceleration_mode, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
load_status = load_model( | |
model_dropdown, | |
lora_strength, | |
use_controlnet, | |
control_mode, | |
use_ip_adapter, | |
control_strength_ip, | |
acceleration_mode | |
) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if use_controlnet and control_image_cont is None: | |
return None, seed, "⚠️ ControlNet need control_image!" | |
if use_ip_adapter and control_image_ip is None: | |
return None, seed, "⚠️ IP-adapter need control_image!" | |
if use_controlnet: | |
control_image_cont= Image.fromarray(control_image_cont) | |
control_strength_cont = float(control_strength_cont) | |
if use_ip_adapter: | |
control_image_ip = Image.fromarray(control_image_ip) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
image=control_image_cont if use_controlnet else None, | |
controlnet_conditioning_scale=control_strength_cont if use_controlnet else None, | |
ip_adapter_image=control_image_ip if use_ip_adapter else None, | |
cross_attention_kwargs={"scale": lora_strength} | |
).images[0] | |
if use_rmbg: | |
image = remove(image) | |
return image, seed, "Model ready" | |
examples = [ | |
"Sticker of Pusheen. Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.", | |
"Gray cat holding a heart-shaped balloon, standing next to a Valentine’s card with 'You’re Pawesome' written in glitter.", | |
"Sticker of Pusheen. Pusheen riding a shopping cart full of cupcakes.", | |
"Sticker of Pusheen. A cat with droopy ears and a patched scarf, sitting on a park bench at dusk, holding a photo of another cat, with autumn leaves falling around it.", | |
"Sticker of Pusheen. A cartoon grey cat asks for a fish in a word cloud.", | |
"Sticker of Pusheen. Pusheen tangled in yarn, playful annoyed face." | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
model_dropdown = gr.Dropdown(label="Model ID", | |
choices=["alexanz/SD14_lora_pusheen", "CompVis/stable-diffusion-v1-4", "alexanz/SD15_lora_pusheen"], | |
value="CompVis/stable-diffusion-v1-4") | |
model_status = gr.Textbox(label="Model Status", interactive=False) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
lora_strength = gr.Slider( | |
label="Lora strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, # Replace with defaults that work for your model | |
) | |
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False) | |
with gr.Accordion("ControlNet Settings", open=True, visible=False) as controlnet_settings: | |
control_mode = gr.Dropdown( | |
label="ControlNet Mode", | |
choices=["edge_detection", "pose_estimation"], | |
value="edge_detection" | |
) | |
control_strength_cont = gr.Slider( | |
label="Control Strength", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0 | |
) | |
control_image_cont = gr.Image(label="Control Image", type="numpy") | |
use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False) | |
with gr.Accordion("IP-adapter Settings", open=True, visible=False) as ip_adapter_settings: | |
control_strength_ip = gr.Slider( | |
label="Control Strength", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0 | |
) | |
control_image_ip = gr.Image(label="Control Image (IP-adapter)", type="numpy") | |
use_rmbg = gr.Checkbox(label="Delete background?", value=False) | |
use_acceleration = gr.Checkbox(label="Use accelerate model? (only for 1.5 SD!)", value=False) | |
with gr.Accordion("Acceleration Settings", open=True, visible=False) as acceleration_settings: | |
acceleration_mode = gr.Dropdown(label="Acceleration mode", | |
choices=["distilled", "distilled + tiny", "DDIM"], | |
value=None) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
lora_strength, | |
guidance_scale, | |
num_inference_steps, | |
use_controlnet, | |
control_image_cont, | |
control_strength_cont, | |
model_dropdown, | |
control_mode, | |
use_ip_adapter, | |
control_strength_ip, | |
control_image_ip, | |
use_rmbg, | |
acceleration_mode | |
], | |
outputs=[result, seed, model_status], | |
) | |
use_controlnet.change( | |
fn=lambda x: gr.update(visible=x, value=None), | |
inputs=[use_controlnet], | |
outputs=[controlnet_settings] | |
) | |
use_ip_adapter.change( | |
fn=lambda x: gr.update(visible=x, value=None), | |
inputs=[use_ip_adapter], | |
outputs=[ip_adapter_settings] | |
) | |
use_rmbg.change( | |
fn=lambda x: gr.update(visible=x, value=None), | |
inputs=[use_rmbg] | |
) | |
use_acceleration.change( | |
fn=lambda x: gr.update(visible=x, value=None), | |
inputs=[use_acceleration], | |
outputs=[acceleration_settings] | |
) | |
if __name__ == "__main__": | |
demo.launch() |