|
import torch |
|
import numpy as np |
|
from src.model.encoder.vggt.utils.rotation import mat_to_quat |
|
from src.model.encoder.vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map |
|
|
|
|
|
def convert_pt3d_RT_to_opencv(Rot, Trans): |
|
""" |
|
Convert Point3D extrinsic matrices to OpenCV convention. |
|
|
|
Args: |
|
Rot: 3D rotation matrix in Point3D format |
|
Trans: 3D translation vector in Point3D format |
|
|
|
Returns: |
|
extri_opencv: 3x4 extrinsic matrix in OpenCV format |
|
""" |
|
rot_pt3d = np.array(Rot) |
|
trans_pt3d = np.array(Trans) |
|
|
|
trans_pt3d[:2] *= -1 |
|
rot_pt3d[:, :2] *= -1 |
|
rot_pt3d = rot_pt3d.transpose(1, 0) |
|
extri_opencv = np.hstack((rot_pt3d, trans_pt3d[:, None])) |
|
return extri_opencv |
|
|
|
|
|
def build_pair_index(N, B=1): |
|
""" |
|
Build indices for all possible pairs of frames. |
|
|
|
Args: |
|
N: Number of frames |
|
B: Batch size |
|
|
|
Returns: |
|
i1, i2: Indices for all possible pairs |
|
""" |
|
i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1) |
|
i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]] |
|
return i1, i2 |
|
|
|
|
|
def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15): |
|
""" |
|
Calculate rotation angle error between ground truth and predicted rotations. |
|
|
|
Args: |
|
rot_gt: Ground truth rotation matrices |
|
rot_pred: Predicted rotation matrices |
|
batch_size: Batch size for reshaping the result |
|
eps: Small value to avoid numerical issues |
|
|
|
Returns: |
|
Rotation angle error in degrees |
|
""" |
|
q_pred = mat_to_quat(rot_pred) |
|
q_gt = mat_to_quat(rot_gt) |
|
|
|
loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps) |
|
err_q = torch.arccos(1 - 2 * loss_q) |
|
|
|
rel_rangle_deg = err_q * 180 / np.pi |
|
|
|
if batch_size is not None: |
|
rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1) |
|
|
|
return rel_rangle_deg |
|
|
|
|
|
def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True): |
|
""" |
|
Calculate translation angle error between ground truth and predicted translations. |
|
|
|
Args: |
|
tvec_gt: Ground truth translation vectors |
|
tvec_pred: Predicted translation vectors |
|
batch_size: Batch size for reshaping the result |
|
ambiguity: Whether to handle direction ambiguity |
|
|
|
Returns: |
|
Translation angle error in degrees |
|
""" |
|
rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred) |
|
rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi |
|
|
|
if ambiguity: |
|
rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs()) |
|
|
|
if batch_size is not None: |
|
rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1) |
|
|
|
return rel_tangle_deg |
|
|
|
|
|
def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6): |
|
""" |
|
Normalize the translation vectors and compute the angle between them. |
|
|
|
Args: |
|
t_gt: Ground truth translation vectors |
|
t: Predicted translation vectors |
|
eps: Small value to avoid division by zero |
|
default_err: Default error value for invalid cases |
|
|
|
Returns: |
|
Angular error between translation vectors in radians |
|
""" |
|
t_norm = torch.norm(t, dim=1, keepdim=True) |
|
t = t / (t_norm + eps) |
|
|
|
t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True) |
|
t_gt = t_gt / (t_gt_norm + eps) |
|
|
|
loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps) |
|
err_t = torch.acos(torch.sqrt(1 - loss_t)) |
|
|
|
err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err |
|
return err_t |
|
|
|
|
|
def calculate_auc(r_error, t_error, max_threshold=30, return_list=False): |
|
""" |
|
Calculate the Area Under the Curve (AUC) for the given error arrays using PyTorch. |
|
|
|
Args: |
|
r_error: torch.Tensor representing R error values (Degree) |
|
t_error: torch.Tensor representing T error values (Degree) |
|
max_threshold: Maximum threshold value for binning the histogram |
|
return_list: Whether to return the normalized histogram as well |
|
|
|
Returns: |
|
AUC value, and optionally the normalized histogram |
|
""" |
|
error_matrix = torch.stack((r_error, t_error), dim=1) |
|
max_errors, _ = torch.max(error_matrix, dim=1) |
|
histogram = torch.histc( |
|
max_errors, bins=max_threshold + 1, min=0, max=max_threshold |
|
) |
|
num_pairs = float(max_errors.size(0)) |
|
normalized_histogram = histogram / num_pairs |
|
|
|
if return_list: |
|
return ( |
|
torch.cumsum(normalized_histogram, dim=0).mean(), |
|
normalized_histogram, |
|
) |
|
return torch.cumsum(normalized_histogram, dim=0).mean() |
|
|
|
|
|
def calculate_auc_np(r_error, t_error, max_threshold=30): |
|
""" |
|
Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy. |
|
|
|
Args: |
|
r_error: numpy array representing R error values (Degree) |
|
t_error: numpy array representing T error values (Degree) |
|
max_threshold: Maximum threshold value for binning the histogram |
|
|
|
Returns: |
|
AUC value and the normalized histogram |
|
""" |
|
error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1) |
|
max_errors = np.max(error_matrix, axis=1) |
|
bins = np.arange(max_threshold + 1) |
|
histogram, _ = np.histogram(max_errors, bins=bins) |
|
num_pairs = float(len(max_errors)) |
|
normalized_histogram = histogram.astype(float) / num_pairs |
|
return np.mean(np.cumsum(normalized_histogram)), normalized_histogram |
|
|
|
|
|
def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames): |
|
""" |
|
Compute rotation and translation errors between predicted and ground truth poses. |
|
|
|
Args: |
|
pred_se3: Predicted SE(3) transformations |
|
gt_se3: Ground truth SE(3) transformations |
|
num_frames: Number of frames |
|
|
|
Returns: |
|
Rotation and translation angle errors in degrees |
|
""" |
|
pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames) |
|
|
|
|
|
|
|
relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm( |
|
gt_se3[pair_idx_i2] |
|
) |
|
relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm( |
|
pred_se3[pair_idx_i2] |
|
) |
|
|
|
|
|
rel_rangle_deg = rotation_angle( |
|
relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3] |
|
) |
|
rel_tangle_deg = translation_angle( |
|
relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3] |
|
) |
|
|
|
return rel_rangle_deg, rel_tangle_deg |
|
|
|
|
|
def align_to_first_camera(camera_poses): |
|
""" |
|
Align all camera poses to the first camera's coordinate frame. |
|
|
|
Args: |
|
camera_poses: Tensor of shape (N, 4, 4) containing camera poses as SE3 transformations |
|
|
|
Returns: |
|
Tensor of shape (N, 4, 4) containing aligned camera poses |
|
""" |
|
first_cam_extrinsic_inv = closed_form_inverse_se3(camera_poses[0][None]) |
|
aligned_poses = torch.matmul(camera_poses, first_cam_extrinsic_inv) |
|
return aligned_poses |