Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import torch | |
import torchvision | |
from typing import Tuple, Dict | |
from timeit import default_timer as timer | |
from model import create_effnetb2_model | |
with open("class_names.txt", "r") as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=101 | |
) | |
effnetb2.load_state_dict( | |
torch.load(f="pretrained_effnetb2_feature_extractor_food101.pth", | |
map_location=torch.device("cpu")) # Load the model to the CPU | |
) | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
transformed_image = effnetb2_transforms(img).unsqueeze(dim=0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(transformed_image), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
end_time = timer() | |
pred_time = round(end_time-start_time, 4) | |
return pred_labels_and_probs, pred_time | |
title = "Food101 Classification App π" | |
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model trained on [Food101 dataset](https://pytorch.org/vision/main/generated/torchvision.datasets.Food101.html) which classifies 101 different food categories." | |
article = "How to Use: Upload a food image in the upload section above or select an images from the 'Examples' section. " \ | |
"Click on the 'Submit' button and the model will detect which" \ | |
"food catagory the image belongs to." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
food101_app = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction Time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
food101_app.launch() | |