File size: 20,691 Bytes
ab9857f 4b5777a ab9857f 74c6a32 ab9857f 74c6a32 ab9857f ca253db 74c6a32 ca253db ab9857f 74c6a32 ab9857f 0978cbc ab9857f 0978cbc ab9857f 74c6a32 ab9857f 74c6a32 ab9857f 78ae283 ab9857f ca253db ab9857f 74c6a32 c4fa085 78ae283 74c6a32 e5764e7 74c6a32 7b8d670 cd051bb 7b8d670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
"""
Constants
"""
import tensorflow as tf
import os
import datetime
import numpy as np
# RUN CONFIG
REMOTE = False # os.popen('hostname').read().encode('utf-8') == 'medtech-beast' #os.environ.get('REMOTE') == 'True'
# Remote execution
DEV_ORDER = 'PCI_BUS_ID'
GPU_NUM = '0'
# Dataset generation constants
# See batchGenerator __next__ method: return [in_mov, in_fix], [disp_map, out_img]
MOVING_IMG = 0
FIXED_IMG = 1
MOVING_PARENCHYMA_MASK = 2
FIXED_PARENCHYMA_MASK = 3
MOVING_VESSELS_MASK = 4
FIXED_VESSELS_MASK = 5
MOVING_TUMORS_MASK = 6
FIXED_TUMORS_MASK = 7
MOVING_SEGMENTATIONS = 8 # Compination of vessels and tumors
FIXED_SEGMENTATIONS = 9 # Compination of vessels and tumors
DISP_MAP_GT = 0
PRED_IMG_GT = 1
DISP_VECT_GT = 2
DISP_VECT_LOC_GT = 3
IMG_SIZE = 128 # Assumed a square image
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # (IMG_SIZE, IMG_SIZE, 1)
DISP_MAP_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 3)
BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 2) # Expected batch shape by the network
BATCH_SHAPE_SEGM = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 3) # Expected batch shape by the network
IMG_BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # Batch shape for single images
RAW_DATA_BASE_DIR = './data'
DEFORMED_DATA_NAME = 'deformed'
GROUND_TRUTH_DATA_NAME = 'groundTruth'
GROUND_TRUTH_COORDS_FILE = 'centerlineCoords_GT.txt'
DEFORMED_COORDS_FILE = 'centerlineCoords_DF.txt'
H5_MOV_IMG = 'input/{}'.format(MOVING_IMG)
H5_FIX_IMG = 'input/{}'.format(FIXED_IMG)
H5_MOV_PARENCHYMA_MASK = 'input/{}'.format(MOVING_PARENCHYMA_MASK)
H5_FIX_PARENCHYMA_MASK = 'input/{}'.format(FIXED_PARENCHYMA_MASK)
H5_MOV_VESSELS_MASK = 'input/{}'.format(MOVING_VESSELS_MASK)
H5_FIX_VESSELS_MASK = 'input/{}'.format(FIXED_VESSELS_MASK)
H5_MOV_TUMORS_MASK = 'input/{}'.format(MOVING_TUMORS_MASK)
H5_FIX_TUMORS_MASK = 'input/{}'.format(FIXED_TUMORS_MASK)
H5_FIX_SEGMENTATIONS = 'input/{}'.format(FIXED_SEGMENTATIONS)
H5_MOV_SEGMENTATIONS = 'input/{}'.format(MOVING_SEGMENTATIONS)
H5_FIX_CENTROID = 'input/fix_centroid'
H5_MOV_CENTROID = 'input/mov_centroid'
H5_GT_DISP = 'output/{}'.format(DISP_MAP_GT)
H5_GT_IMG = 'output/{}'.format(PRED_IMG_GT)
H5_GT_DISP_VECT = 'output/{}'.format(DISP_VECT_GT)
H5_GT_DISP_VECT_LOC = 'output/{}'.format(DISP_VECT_LOC_GT)
H5_PARAMS_INTENSITY_RANGE = 'parameters/intensity'
TRAINING_PERC = 0.8
VALIDATION_PERC = 1 - TRAINING_PERC
MAX_ANGLE = 45.0 # degrees
MAX_FLIPS = 2 # Axes to flip over
NUM_ROTATIONS = 5
MAX_WORKERS = 10
DEG_TO_RAD = np.pi/180.
# Labels to pass to the input_labels and output_labels parameter of DataGeneratorManager
DG_LBL_FIX_IMG = H5_FIX_IMG
DG_LBL_FIX_VESSELS = H5_FIX_VESSELS_MASK
DG_LBL_FIX_PARENCHYMA = H5_FIX_PARENCHYMA_MASK
DG_LBL_FIX_TUMOR = H5_FIX_TUMORS_MASK
DG_LBL_MOV_IMG = H5_MOV_IMG
DG_LBL_MOV_VESSELS = H5_MOV_VESSELS_MASK
DG_LBL_MOV_PARENCHYMA = H5_MOV_PARENCHYMA_MASK
DG_LBL_MOV_TUMOR = H5_MOV_TUMORS_MASK
DG_LBL_ZERO_GRADS = 'zero_gradients'
DG_LBL_FIX_CENTROID = H5_FIX_CENTROID
DG_LBL_MOV_CENTROID = H5_MOV_CENTROID
# Training constants
MODEL = 'unet'
BATCH_NORM = False
TENSORBOARD = False
LIMIT_NUM_SAMPLES = None # If you don't want to use all the samples in the training set. None to use all
TRAINING_DATASET = 'data/training.hd5'
TEST_DATASET = 'data/test.hd5'
VALIDATION_DATASET = 'data/validation.hd5'
LOSS_FNC = 'mse'
LOSS_SCHEME = 'unidirectional'
NUM_EPOCHS = 10
DATA_FORMAT = 'channels_last' # or 'channels_fist'
DATA_DIR = './data'
MODEL_CHECKPOINT = './model_checkpoint'
BATCH_SIZE = 8
ACCUM_GRADIENT_STEP = 1
EARLY_STOP_PATIENCE = 30 # Weights are updated every ACCUM_GRADIENT_STEPth step
EPOCHS = 100
SAVE_EPOCH = EPOCHS // 10 # Epoch when to save the model
VERBOSE_EPOCH = EPOCHS // 10
VALIDATION_ERR_LIMIT = 0.2 # Stop training if reached this limit
VALIDATION_ERR_LIMIT_COUNTER = 10 # Number of successive times the validation error was smaller than the threshold
VALIDATION_ERR_LIMIT_COUNTER_BACKUP = 10
THRESHOLD = 0.5 # Threshold to select the centerline in the interpolated images
RESTORE_TRAINING = True # look for previously saved models to resume training
LOG_FIELD_NAMES = ['time', 'epoch', 'step',
'training_loss_mean', 'training_loss_std',
'training_loss1_mean', 'training_loss1_std',
'training_loss2_mean', 'training_loss2_std',
'training_loss3_mean', 'training_loss3_std',
'training_ncc1_mean', 'training_ncc1_std',
'training_ncc2_mean', 'training_ncc2_std',
'training_ncc3_mean', 'training_ncc3_std',
'validation_loss_mean', 'validation_loss_std',
'validation_loss1_mean', 'validation_loss1_std',
'validation_loss2_mean', 'validation_loss2_std',
'validation_loss3_mean', 'validation_loss3_std',
'validation_ncc1_mean', 'validation_ncc1_std',
'validation_ncc2_mean', 'validation_ncc2_std',
'validation_ncc3_mean', 'validation_ncc3_std']
LOG_FIELD_NAMES_SHORT = ['time', 'epoch', 'step',
'training_loss_mean', 'training_loss_std',
'training_loss1_mean', 'training_loss1_std',
'training_loss2_mean', 'training_loss2_std',
'training_ncc1_mean', 'training_ncc1_std',
'training_ncc2_mean', 'training_ncc2_std',
'validation_loss_mean', 'validation_loss_std',
'validation_loss1_mean', 'validation_loss1_std',
'validation_loss2_mean', 'validation_loss2_std',
'validation_ncc1_mean', 'validation_ncc1_std',
'validation_ncc2_mean', 'validation_ncc2_std']
LOG_FIELD_NAMES_UNET = ['time', 'epoch', 'step', 'reg_smooth_coeff', 'reg_jacob_coeff',
'training_loss_mean', 'training_loss_std',
'training_loss_dissim_mean', 'training_loss_dissim_std',
'training_reg_smooth_mean', 'training_reg_smooth_std',
'training_reg_jacob_mean', 'training_reg_jacob_std',
'training_ncc_mean', 'training_ncc_std',
'training_dice_mean', 'training_dice_std',
'training_owo_mean', 'training_owo_std',
'validation_loss_mean', 'validation_loss_std',
'validation_loss_dissim_mean', 'validation_loss_dissim_std',
'validation_reg_smooth_mean', 'validation_reg_smooth_std',
'validation_reg_jacob_mean', 'validation_reg_jacob_std',
'validation_ncc_mean', 'validation_ncc_std',
'validation_dice_mean', 'validation_dice_std',
'validation_owo_mean', 'validation_owo_std']
CUR_DATETIME = datetime.datetime.now().strftime("%H%M_%d%m%Y")
DESTINATION_FOLDER = 'training_log_' + CUR_DATETIME
CSV_DELIMITER = ";"
CSV_QUOTE_CHAR = '"'
REG_SMOOTH = 0.0
REG_MAG = 1.0
REG_TYPE = 'l2'
MAX_DISP_DM = 10.
MAX_DISP_DM_TF = tf.constant((MAX_DISP_DM,), tf.float32, name='MAX_DISP_DM')
MAX_DISP_DM_PERC = 0.25
W_SIM = 0.7
W_REG = 0.3
W_INV = 0.1
# Loss function parameters
REG_SMOOTH1 = 1 / 100000
REG_SMOOTH2 = 1 / 5000
REG_SMOOTH3 = 1 / 5000
LOSS1 = 1.0
LOSS2 = 0.6
LOSS3 = 0.3
REG_JACOBIAN = 0.1
LOSS_COEFFICIENT = 1.0
REG_COEFFICIENT = 1.0
DICE_SMOOTH = 1.
CC_WINDOW = [9,9,9]
# Adam optimizer
LEARNING_RATE = 1e-3
B1 = 0.9
B2 = 0.999
LEARNING_RATE_DECAY = 0.01
LEARNING_RATE_DECAY_STEP = 10000 # Update the learning rate every LEARNING_RATE_DECAY_STEP steps
OPTIMIZER = 'adam'
# Network architecture constants
LAYER_MAXPOOL = 0
LAYER_UPSAMP = 1
LAYER_CONV = 2
AFFINE_TRANSF = False
OUTPUT_LAYER = 3
DROPOUT = True
DROPOUT_RATE = 0.2
MAX_DATA_SIZE = (1000, 1000, 1)
PLATEAU_THR = 0.01 # A slope between +-PLATEAU_THR will be considered a plateau for the LR updating function
ENCODER_FILTERS = [32, 64, 128, 256, 512, 1024]
DECODER_FILTERS = ENCODER_FILTERS[::-1] + [16, 16]
# SSIM
SSIM_FILTER_SIZE = 11 # Size of Gaussian filter
SSIM_FILTER_SIGMA = 1.5 # Width of Gaussian filter
SSIM_K1 = 0.01 # Def. 0.01
SSIM_K2 = 0.03 # Recommended values 0 < K2 < 0.4
MAX_VALUE = 1.0 # Maximum intensity values
# Mathematics constants
EPS = 1e-8
EPS_tf = tf.constant(EPS, dtype=tf.float32)
LOG2 = tf.math.log(tf.constant(2, dtype=tf.float32))
# Debug constants
VERBOSE = False
DEBUG = False
DEBUG_TRAINING = False
DEBUG_INPUT_DATA = False
# Plotting
FONT_SIZE = 10
DPI = 200 # Dots Per Inch
# Coordinates
B = 0 # Batch dimension
H = 1 # Height dimension
W = 2 # Width dimension
D = 3 # Depth
C = -1 # Channel dimension
D_DISP = 2
W_DISP = 1
H_DISP = 0
DIMENSIONALITY = 3
# Interpolation type
BIL_INTERP = 0
TPS_INTERP = 1
CUADRATIC_C = 0.5
# Data augmentation
MAX_DISP = 5 # Test = 15
NUM_ROT = 5
NUM_FLIPS = 2
MAX_ANGLE = 10
# Thin Plate Splines implementation constants
TPS_NUM_CTRL_PTS_PER_AXIS = 4
TPS_NUM_CTRL_PTS = np.power(TPS_NUM_CTRL_PTS_PER_AXIS, DIMENSIONALITY)
TPS_REG = 0.01
DISP_SCALE = 2 # Scaling of the output of the CNN to increase the range of tanh
class CoordinatesGrid:
def __init__(self):
self.__grid = 0
self.__grid_fl = 0
self.__norm = False
self.__num_pts = 0
self.__batches = False
self.__shape = None
self.__shape_flat = None
def set_coords_grid(self, img_shape: tf.TensorShape, num_ppa: int = None, batches: bool = False,
img_type: tf.DType = tf.float32, norm: bool = False):
self.__batches = batches
not_batches = not batches # Just to not make a too complex code when indexing the values
if num_ppa is None:
num_ppa = img_shape
if norm:
x_coords = tf.linspace(-1., 1.,
num_ppa[W - int(not_batches)]) # np.linspace works fine, tf had some issues...
y_coords = tf.linspace(-1., 1., num_ppa[H - int(not_batches)]) # num_ppa: number of points per axis
z_coords = tf.linspace(-1., 1., num_ppa[D - int(not_batches)])
else:
x_coords = tf.linspace(0., img_shape[W - int(not_batches)] - 1.,
num_ppa[W - int(not_batches)]) # np.linspace works fine, tf had some issues...
y_coords = tf.linspace(0., img_shape[H - int(not_batches)] - 1.,
num_ppa[H - int(not_batches)]) # num_ppa: number of points per axis
z_coords = tf.linspace(0., img_shape[D - int(not_batches)] - 1., num_ppa[D - int(not_batches)])
coords = tf.meshgrid(x_coords, y_coords, z_coords, indexing='ij')
self.__num_pts = num_ppa[W - int(not_batches)] * num_ppa[H - int(not_batches)] * num_ppa[D - int(not_batches)]
grid = tf.stack([coords[0], coords[1], coords[2]], axis=-1)
grid = tf.cast(grid, img_type)
grid_fl = tf.stack([tf.reshape(coords[0], [-1]),
tf.reshape(coords[1], [-1]),
tf.reshape(coords[2], [-1])], axis=-1)
grid_fl = tf.cast(grid_fl, img_type)
grid_homogeneous = tf.stack([tf.reshape(coords[0], [-1]),
tf.reshape(coords[1], [-1]),
tf.reshape(coords[2], [-1]),
tf.ones_like(tf.reshape(coords[0], [-1]))], axis=-1)
self.__shape = np.asarray([num_ppa[W - int(not_batches)], num_ppa[H - int(not_batches)], num_ppa[D - int(not_batches)], 3])
total_num_pts = np.prod(self.__shape[:-1])
self.__shape_flat = np.asarray([total_num_pts, 3])
if batches:
grid = tf.expand_dims(grid, axis=0)
grid = tf.tile(grid, [img_shape[B], 1, 1, 1, 1])
grid_fl = tf.expand_dims(grid_fl, axis=0)
grid_fl = tf.tile(grid_fl, [img_shape[B], 1, 1])
grid_homogeneous = tf.expand_dims(grid_homogeneous, axis=0)
grid_homogeneous = tf.tile(grid_homogeneous, [img_shape[B], 1, 1])
self.__shape = np.concatenate([np.asarray((img_shape[B],)), self.__shape])
self.__shape_flat = np.concatenate([np.asarray((img_shape[B],)), self.__shape_flat])
self.__norm = norm
self.__grid_fl = grid_fl
self.__grid = grid
self.__grid_homogeneous = grid_homogeneous
@property
def grid(self):
return self.__grid
@property
def size(self):
return self.__len__()
def grid_flat(self, transpose=False):
if transpose:
if self.__batches:
ret = tf.transpose(self.__grid_fl, (0, 2, 1))
else:
ret = tf.transpose(self.__grid_fl)
else:
ret = self.__grid_fl
return ret
def grid_homogeneous(self, transpose=False):
if transpose:
if self.__batches:
ret = tf.transpose(self.__grid_homogeneous, (0, 2, 1))
else:
ret = tf.transpose(self.__grid_homogeneous)
else:
ret = self.__grid_homogeneous
return ret
@property
def is_normalized(self):
return self.__norm
def __len__(self):
return tf.size(self.__grid)
@property
def number_pts(self):
return self.__num_pts
@property
def shape_grid_flat(self):
return self.__shape_flat
@property
def shape(self):
return self.__shape
COORDS_GRID = CoordinatesGrid()
class VisualizationParameters:
def __init__(self):
self.__scale = None # See https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.quiver.html
self.__spacing = 15
def set_spacing(self, img_shape: tf.TensorShape):
if isinstance(img_shape, tf.TensorShape):
self.__spacing = int(5 * np.log(img_shape[W]))
else:
self.__spacing = img_shape
@property
def spacing(self):
return self.__spacing
def set_arrow_scale(self, scale: int):
self.__scale = scale
@property
def arrow_scale(self):
return self.__scale
QUIVER_PARAMS = VisualizationParameters()
# Configuration file
CONF_FILE_NAME = 'configuration.txt'
def summary():
return '##### CONFIGURATION: REMOTE {} DEBUG {} DEBUG TRAINING {}' \
'\n\t\tLEARNING RATE: {}' \
'\n\t\tBATCH SIZE: {}' \
'\n\t\tLIMIT NUM SAMPLES: {}' \
'\n\t\tLOSS_FNC: {}' \
'\n\t\tTRAINING_DATASET: {} ({:.1f}%/{:.1f}%)' \
'\n\t\tTEST_DATASET: {}'.format(REMOTE, DEBUG, DEBUG_TRAINING, LEARNING_RATE, BATCH_SIZE, LIMIT_NUM_SAMPLES,
LOSS_FNC, TRAINING_DATASET, TRAINING_PERC * 100, (1 - TRAINING_PERC) * 100,
TEST_DATASET)
# LOG Severity levers
# https://docs.python.org/2/library/logging.html#logging-levels
INF = 20 # Information
WAR = 30 # Warning
ERR = 40 # Error
DEB = 10 # Debug
CRI = 50 # Critical
SUMMARY_LINE_LENGTH = 150
SEVERITY_STR = {INF: 'INFO',
WAR: 'WARNING',
ERR: 'ERROR',
DEB: 'DEBUG',
CRI: 'CRITICAL'}
HL_LOG_FIELD_NAMES = ['Time', 'Epoch', 'Step',
'train_loss', 'train_loss_std',
'train_loss1', 'train_loss1_std',
'train_loss2', 'train_loss2_std',
'train_loss3', 'train_loss3_std',
'train_NCC', 'train_NCC_std',
'val_loss', 'val_loss_std',
'val_loss1', 'val_loss1_std',
'val_loss2', 'val_loss2_std',
'val_loss3', 'val_loss3_std',
'val_NCC', 'val_NCC_std']
# Sobel filters
SOBEL_W_2D = tf.constant([[-1., 0., 1.],
[-2., 0., 2.],
[-1., 0., 1.]], dtype=tf.float32, name='sobel_w_2d')
SOBEL_W_3D = tf.tile(tf.expand_dims(SOBEL_W_2D, axis=-1), [1, 1, 3])
SOBEL_H_3D = tf.transpose(SOBEL_W_3D, [1, 0, 2])
SOBEL_D_3D = tf.transpose(SOBEL_W_3D, [2, 1, 0])
aux = tf.expand_dims(tf.expand_dims(SOBEL_W_3D, axis=-1), axis=-1)
SOBEL_FILTER_W_3D_IMAGE = aux
SOBEL_FILTER_W_3D = tf.tile(aux, [1, 1, 1, 3, 3])
# tf.nn.conv3d expects the filter in [D, H, W, C_in, C_out] order
SOBEL_FILTER_W_3D = tf.transpose(SOBEL_FILTER_W_3D, [2, 0, 1, 3, 4], name='sobel_filter_i_3d')
aux = tf.expand_dims(tf.expand_dims(SOBEL_H_3D, axis=-1), axis=-1)
SOBEL_FILTER_H_3D_IMAGE = aux
SOBEL_FILTER_H_3D = tf.tile(aux, [1, 1, 1, 3, 3])
SOBEL_FILTER_H_3D = tf.transpose(SOBEL_FILTER_H_3D, [2, 0, 1, 3, 4], name='sobel_filter_j_3d')
aux = tf.expand_dims(tf.expand_dims(SOBEL_D_3D, axis=-1), axis=-1)
SOBEL_FILTER_D_3D_IMAGE = aux
SOBEL_FILTER_D_3D = tf.tile(aux, [1, 1, 1, 3, 3])
SOBEL_FILTER_D_3D = tf.transpose(SOBEL_FILTER_D_3D, [2, 1, 0, 3, 4], name='sobel_filter_k_3d')
# Filters for spatial integration of the displacement map
INTEG_WIND_SIZE = IMG_SIZE
INTEG_STEPS = 4 # VoxelMorph default value for the integration of the stationary velocity field. >4 memory alloc issue
INTEG_FILTER_D = tf.ones([INTEG_WIND_SIZE, 1, 1, 1, 1], name='integrate_h_filter')
INTEG_FILTER_H = tf.ones([1, INTEG_WIND_SIZE, 1, 1, 1], name='integrate_w_filter')
INTEG_FILTER_W = tf.ones([1, 1, INTEG_WIND_SIZE, 1, 1], name='integrate_d_filter')
# Laplacian filter
LAPLACIAN_27_P = tf.constant(np.asarray([np.ones((3, 3)),
[[1, 1, 1],
[1, -26, 1],
[1, 1, 1]],
np.ones((3, 3))]), tf.float32)
LAPLACIAN_27_P = tf.expand_dims(tf.expand_dims(LAPLACIAN_27_P, axis=-1), axis=-1)
LAPLACIAN_27_P = tf.tile(LAPLACIAN_27_P, [1, 1, 1, 3, 3], name='laplacian_27_p')
LAPLACIAN_7_P = tf.constant(np.asarray([[[0, 0, 0],
[0, 1, 0],
[0, 0, 0]],
[[0, 1, 0],
[1, -6, 1],
[0, 1, 0]],
[[0, 0, 0],
[0, 1, 0],
[0, 0, 0]]]), tf.float32)
LAPLACIAN_7_P = tf.expand_dims(tf.expand_dims(LAPLACIAN_7_P, axis=-1), axis=-1)
LAPLACIAN_7_P = tf.tile(LAPLACIAN_7_P, [1, 1, 1, 3, 3], name='laplacian_7_p')
# Constants for bias loss
ZERO_WARP = tf.zeros((1,) + DISP_MAP_SHAPE, name='zero_warp')
BIAS_WARP_WEIGHT = 1e-02
BIAS_AFFINE_WEIGHT = 1e-02
# Overlapping score
OS_SCALE = 10
EPS_1 = 1.0
EPS_1_tf = tf.constant(EPS_1)
# LDDMM
GAUSSIAN_KERNEL_SHAPE = (8, 8, 8)
# Constants for Unsupervised Learning layer
PRIOR_W = [1., 1 / 60, 1.]
MANUAL_W = [1.] * len(PRIOR_W)
REG_PRIOR_W = [1e-3]
REG_MANUAL_W = [1.] * len(REG_PRIOR_W)
# Constants for augmentation layer
# .../T1/training/zoom_factors.csv contain the scale factors of all the training samples from isotropic to 128x128x128
# The augmentation values will be scaled using the average+std
IXI_DATASET_iso_to_cubic_scales = np.asarray([0.655491 + 0.039223, 0.496783 + 0.029349, 0.499691 + 0.028155])
# ...OSLO_COMET_CT/Formatted_128x128x128/zoom_factors.csv contain the scale factors of all the training samples from isotropic to 128x128x128
COMET_DATASET_iso_to_cubic_scales = np.asarray([0.455259 + 0.048027, 0.492012 + 0.044298, 0.577552 + 0.051708])
MAX_AUG_DISP_ISOT = 30 # mm
MAX_AUG_DEF_ISOT = 6 # mm
MAX_AUG_DISP = np.max(MAX_AUG_DISP_ISOT * IXI_DATASET_iso_to_cubic_scales) # Scaled displacements
MAX_AUG_DEF = np.max(MAX_AUG_DEF_ISOT * IXI_DATASET_iso_to_cubic_scales) # Scaled deformations
MAX_AUG_ANGLE = np.max([np.arctan(np.tan(10*np.pi/180) * IXI_DATASET_iso_to_cubic_scales[1] / IXI_DATASET_iso_to_cubic_scales[0]) * 180 / np.pi,
np.arctan(np.tan(10*np.pi/180) * IXI_DATASET_iso_to_cubic_scales[2] / IXI_DATASET_iso_to_cubic_scales[1]) * 180 / np.pi,
np.arctan(np.tan(10*np.pi/180) * IXI_DATASET_iso_to_cubic_scales[2] / IXI_DATASET_iso_to_cubic_scales[0]) * 180 / np.pi]) # Scaled angles
GAMMA_AUGMENTATION = True
BRIGHTNESS_AUGMENTATION = False
NUM_CONTROL_PTS_AUG = 10
NUM_AUGMENTATIONS = 1
ANATOMIES = {'L': 'liver', 'B': 'brain'}
MODEL_TYPES = {'BL-N': 'bl_ncc',
'BL-NS': 'bl_ncc_ssim',
'SG-ND': 'sg_ncc_dsc',
'SG-NSD': 'sg_ncc_ssim_dsc',
'UW-NSD': 'uw_ncc_ssim_dsc',
'UW-NSDH': 'uw_ncc_ssim_dsc_hd'}
|