Spaces:
Sleeping
Sleeping
File size: 12,017 Bytes
62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc 62d1e75 38deecc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
# Initialize session state for model and tokenizer FIRST - before any usage
if 'model' not in st.session_state:
st.session_state.model = None
print("Initialized st.session_state.model to None")
if 'tokenizer' not in st.session_state:
st.session_state.tokenizer = None
print("Initialized st.session_state.tokenizer to None")
if 'device' not in st.session_state:
st.session_state.device = torch.device("cpu") # Force CPU for stability
print(f"Using device: {st.session_state.device}")
# Load GCP authentication from utility function
try:
credentials = setup_gcp_auth()
storage_client = storage.Client(credentials=credentials)
bucket_name = "indian_spiritual-1"
bucket = storage_client.bucket(bucket_name)
print("β
GCP client initialized successfully")
except Exception as e:
print(f"β GCP client initialization error: {str(e)}")
raise
# Setup OpenAI authentication
try:
setup_openai_auth()
print("β
OpenAI client initialized successfully")
except Exception as e:
print(f"β OpenAI client initialization error: {str(e)}")
raise
# GCS Paths
metadata_file_gcs = "metadata/metadata.jsonl"
embeddings_file_gcs = "processed/embeddings/all_embeddings.npy"
faiss_index_file_gcs = "processed/indices/faiss_index.faiss"
text_chunks_file_gcs = "processed/chunks/text_chunks.txt"
# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
def load_model():
try:
if st.session_state.model is None:
# Force model to CPU - more stable than GPU for this use case
os.environ["CUDA_VISIBLE_DEVICES"] = ""
with st.spinner("Loading tokenizer and model... This may take a minute."):
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
print("Loading model...")
model = AutoModel.from_pretrained(
"intfloat/e5-small-v2",
torch_dtype=torch.float16, # Use half precision
low_cpu_mem_usage=True,
# Remove device_map - it requires accelerate and causes issues
)
model.eval()
torch.set_grad_enabled(False)
st.session_state.tokenizer = tokenizer
st.session_state.model = model
print("β
Model loaded successfully")
return st.session_state.tokenizer, st.session_state.model
except Exception as e:
print(f"β Error loading model: {str(e)}")
st.error(f"Error loading model: {str(e)}")
raise
def download_file_from_gcs(gcs_path, local_path):
"""Download a file from GCS to local storage."""
try:
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"β
Downloaded {gcs_path} β {local_path}")
except Exception as e:
print(f"β Error downloading {gcs_path}: {str(e)}")
st.error(f"Error downloading {gcs_path}: {str(e)}")
raise
# Add error handling around file downloads
try:
# Download necessary files with a spinner to show progress
with st.spinner("Downloading necessary files..."):
download_file_from_gcs(faiss_index_file_gcs, local_faiss_index_file)
download_file_from_gcs(text_chunks_file_gcs, local_text_chunks_file)
download_file_from_gcs(metadata_file_gcs, local_metadata_file)
except Exception as e:
st.error(f"Error setting up data files: {str(e)}")
raise
# Load FAISS index with error handling
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"β Error loading FAISS index: {str(e)}")
st.error(f"Error loading FAISS index: {str(e)}")
raise
# Load text chunks with error handling
try:
text_chunks = {} # {ID -> (Title, Author, Text)}
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"β Error loading text chunks: {str(e)}")
st.error(f"Error loading text chunks: {str(e)}")
raise
# Load metadata.jsonl for publisher information with error handling
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item # Store for easy lookup
except Exception as e:
print(f"β Error loading metadata: {str(e)}")
st.error(f"Error loading metadata: {str(e)}")
raise
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
def average_pool(last_hidden_states, attention_mask):
"""Average pooling for sentence embeddings."""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
query_embedding_cache = {}
def get_embedding(text):
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
tokenizer, model = load_model()
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
# Move to CPU explicitly before processing
inputs = {k: v.to('cpu') for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
# Ensure we detach and move to numpy on CPU
embeddings = embeddings.detach().cpu().numpy()
# Explicitly clean up
del outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"β Embedding error: {str(e)}")
st.error(f"Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2
def retrieve_passages(query, top_k=5, similarity_threshold=0.5):
"""Retrieve top-k most relevant passages using FAISS with metadata."""
try:
print(f"\nπ Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
# Normalize title and remove .txt
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
# Ensure unique citations
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"β Error in retrieve_passages: {str(e)}")
st.error(f"Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""
Generate an answer using OpenAI GPT model with formatted citations.
"""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
# System message
system_message = (
"You are an AI specialized in Indian spiritual texts. "
"Answer based on context, summarizing ideas rather than quoting verbatim. "
"Ensure proper citation and do not include direct excerpts."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
answer = response.choices[0].message.content.strip()
# Enforce word limit
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"β LLM API error: {str(e)}")
st.error(f"LLM API error: {str(e)}")
return "I apologize, but I'm unable to answer at the moment."
def format_citations(sources):
"""Format citations to display each one on a new line."""
return "\n".join([f"π {title} by {author}, Published by {publisher}" for title, author, publisher in sources])
def process_query(query, top_k=5, word_limit=100):
"""Process a query through the RAG pipeline with proper formatting."""
print(f"\nπ Processing query: {query}")
retrieved_context, retrieved_sources = retrieve_passages(query, top_k=top_k)
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "β οΈ No relevant context found."
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources} |