anveshak / rag_engine.py
ankanghosh's picture
Update rag_engine.py
05a1de8 verified
raw
history blame
13.9 kB
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc
# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
# =============================================================================
# RESOURCE CACHING
# =============================================================================
@st.cache_resource(show_spinner=False)
def cached_load_model():
"""Cached version of load_model() for embedding model loading."""
try:
# Force model to CPU
device = torch.device("cpu")
# Get embedding model path from secrets
try:
embedding_model = st.secrets["EMBEDDING_MODEL"]
except KeyError:
print("❌ Error: Embedding model path not found in secrets")
return None, None
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(
embedding_model,
torch_dtype=torch.float16
)
# Move model to CPU and set to eval mode
model = model.to(device)
model.eval()
# Disable gradient computation
torch.set_grad_enabled(False)
print("βœ… Model loaded successfully (cached)")
return tokenizer, model
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
return None, None
@st.cache_resource(show_spinner=False)
def cached_load_data_files():
"""Cached version of load_data_files() for FAISS index, text chunks, and metadata."""
# Initialize GCP and OpenAI clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
print("Failed to initialize required services")
return None, None, None
# Get GCS paths from secrets - required
try:
metadata_file_gcs = st.secrets["METADATA_PATH_GCS"]
embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"]
faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"]
text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"]
except KeyError as e:
print(f"❌ Error: Required GCS path not found in secrets: {e}")
return None, None, None
# Download necessary files if not already present locally
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
print("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"❌ Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # Mapping: ID -> (Title, Author, Text)
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"❌ Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item
except Exception as e:
print(f"❌ Error loading metadata: {str(e)}")
return None, None, None
print(f"βœ… Data loaded successfully (cached): {len(text_chunks)} passages available")
return faiss_index, text_chunks, metadata_dict
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def setup_gcp_client():
try:
credentials = setup_gcp_auth()
try:
bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"]
except KeyError:
print("❌ Error: GCS bucket name not found in secrets")
return None
storage_client = storage.Client(credentials=credentials)
bucket = storage_client.bucket(bucket_name_gcs)
print("βœ… GCP client initialized successfully")
return bucket
except Exception as e:
print(f"❌ GCP client initialization error: {str(e)}")
return None
def setup_openai_client():
try:
setup_openai_auth()
print("βœ… OpenAI client initialized successfully")
return True
except Exception as e:
print(f"❌ OpenAI client initialization error: {str(e)}")
return False
def download_file_from_gcs(bucket, gcs_path, local_path):
"""Download a file from GCS to local storage if not already present."""
try:
if os.path.exists(local_path):
print(f"File already exists locally: {local_path}")
return True
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
return True
except Exception as e:
print(f"❌ Error downloading {gcs_path}: {str(e)}")
return False
def average_pool(last_hidden_states, attention_mask):
"""Average pooling for sentence embeddings."""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# In-memory cache for query embeddings
query_embedding_cache = {}
def get_embedding(text):
"""Generate embeddings for a text query using the cached model."""
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
tokenizer, model = cached_load_model()
if model is None:
print("Model is None, returning zero embedding")
return np.zeros((1, 384), dtype=np.float32)
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.detach().cpu().numpy()
del outputs, inputs
gc.collect()
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"❌ Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32)
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""Retrieve top-k most relevant passages using FAISS and accompanying metadata."""
try:
print(f"\nπŸ” Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"❌ Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""Generate an answer using the OpenAI GPT model with formatted citations."""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
system_message = (
"You are an AI specialized in Indian spiritual texts. "
"Answer based on context, summarizing ideas rather than quoting verbatim. "
"Ensure proper citation and do not include direct excerpts."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
try:
llm_model = st.secrets["LLM_MODEL"]
except KeyError:
print("❌ Error: LLM model not found in secrets")
return "I apologize, but I'm unable to answer at the moment."
response = openai.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
answer = response.choices[0].message.content.strip()
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"❌ LLM API error: {str(e)}")
return "I apologize, but I'm unable to answer at the moment."
def format_citations(sources):
"""Format citations so that each appears on a new line, ending with proper punctuation."""
formatted_citations = []
for title, author, publisher in sources:
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
# =============================================================================
# DATA CACHING FOR QUERY RESULTS
# =============================================================================
@st.cache_data(ttl=3600, show_spinner=False)
def cached_process_query(query, top_k=5, word_limit=100):
"""Cached query processing to avoid redundant computation for repeated queries."""
print(f"\nπŸ” Processing query (cached): {query}")
faiss_index, text_chunks, metadata_dict = cached_load_data_files()
if faiss_index is None or text_chunks is None or metadata_dict is None:
return {
"query": query,
"answer_with_rag": "⚠️ System error: Data files not loaded properly.",
"citations": "No citations available."
}
retrieved_context, retrieved_sources = retrieve_passages(
query,
faiss_index,
text_chunks,
metadata_dict,
top_k=top_k
)
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "⚠️ No relevant context found."
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
def process_query(query, top_k=5, word_limit=100):
"""Process a query through the RAG pipeline with proper formatting.
This function wraps the cached query processing.
"""
return cached_process_query(query, top_k, word_limit)
# Alias for backward compatibility.
load_model = cached_load_model