Spaces:
Sleeping
Sleeping
File size: 13,911 Bytes
62d1e75 6aa479a 62d1e75 2311e2d 6aa479a 62d1e75 db4ca04 62d1e75 db4ca04 2311e2d 6aa479a c440b0b ef4e95d 3188460 ef4e95d 3188460 ef4e95d 6aa479a 72511f1 c440b0b 72511f1 6aa479a c440b0b db4ca04 6aa479a c440b0b 6aa479a c440b0b db4ca04 c440b0b 6aa479a 62d1e75 3b2ec72 62d1e75 db4ca04 2311e2d c440b0b 2311e2d ef4e95d 3188460 ef4e95d db4ca04 87dead9 c440b0b 87dead9 2311e2d db4ca04 2311e2d 6aa479a 2311e2d 6aa479a 2311e2d db4ca04 2311e2d 62d1e75 db4ca04 62d1e75 db4ca04 62d1e75 db4ca04 62d1e75 ff4d9c5 62d1e75 db4ca04 6aa479a 3b2ec72 ff4d9c5 c440b0b ff4d9c5 c440b0b 62d1e75 adff5e8 db4ca04 62d1e75 adff5e8 62d1e75 adff5e8 62d1e75 adff5e8 62d1e75 db4ca04 62d1e75 db4ca04 62d1e75 ef4e95d 3188460 ef4e95d 62d1e75 ef4e95d 62d1e75 38deecc db4ca04 f637309 38deecc db4ca04 c440b0b 2311e2d adff5e8 2311e2d 62d1e75 db4ca04 62d1e75 db4ca04 024dec5 05a1de8 024dec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc
# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
# =============================================================================
# RESOURCE CACHING
# =============================================================================
@st.cache_resource(show_spinner=False)
def cached_load_model():
"""Cached version of load_model() for embedding model loading."""
try:
# Force model to CPU
device = torch.device("cpu")
# Get embedding model path from secrets
try:
embedding_model = st.secrets["EMBEDDING_MODEL"]
except KeyError:
print("β Error: Embedding model path not found in secrets")
return None, None
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(
embedding_model,
torch_dtype=torch.float16
)
# Move model to CPU and set to eval mode
model = model.to(device)
model.eval()
# Disable gradient computation
torch.set_grad_enabled(False)
print("β
Model loaded successfully (cached)")
return tokenizer, model
except Exception as e:
print(f"β Error loading model: {str(e)}")
return None, None
@st.cache_resource(show_spinner=False)
def cached_load_data_files():
"""Cached version of load_data_files() for FAISS index, text chunks, and metadata."""
# Initialize GCP and OpenAI clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
print("Failed to initialize required services")
return None, None, None
# Get GCS paths from secrets - required
try:
metadata_file_gcs = st.secrets["METADATA_PATH_GCS"]
embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"]
faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"]
text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"]
except KeyError as e:
print(f"β Error: Required GCS path not found in secrets: {e}")
return None, None, None
# Download necessary files if not already present locally
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
print("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"β Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # Mapping: ID -> (Title, Author, Text)
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"β Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item
except Exception as e:
print(f"β Error loading metadata: {str(e)}")
return None, None, None
print(f"β
Data loaded successfully (cached): {len(text_chunks)} passages available")
return faiss_index, text_chunks, metadata_dict
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def setup_gcp_client():
try:
credentials = setup_gcp_auth()
try:
bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"]
except KeyError:
print("β Error: GCS bucket name not found in secrets")
return None
storage_client = storage.Client(credentials=credentials)
bucket = storage_client.bucket(bucket_name_gcs)
print("β
GCP client initialized successfully")
return bucket
except Exception as e:
print(f"β GCP client initialization error: {str(e)}")
return None
def setup_openai_client():
try:
setup_openai_auth()
print("β
OpenAI client initialized successfully")
return True
except Exception as e:
print(f"β OpenAI client initialization error: {str(e)}")
return False
def download_file_from_gcs(bucket, gcs_path, local_path):
"""Download a file from GCS to local storage if not already present."""
try:
if os.path.exists(local_path):
print(f"File already exists locally: {local_path}")
return True
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"β
Downloaded {gcs_path} β {local_path}")
return True
except Exception as e:
print(f"β Error downloading {gcs_path}: {str(e)}")
return False
def average_pool(last_hidden_states, attention_mask):
"""Average pooling for sentence embeddings."""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# In-memory cache for query embeddings
query_embedding_cache = {}
def get_embedding(text):
"""Generate embeddings for a text query using the cached model."""
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
tokenizer, model = cached_load_model()
if model is None:
print("Model is None, returning zero embedding")
return np.zeros((1, 384), dtype=np.float32)
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.detach().cpu().numpy()
del outputs, inputs
gc.collect()
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"β Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32)
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""Retrieve top-k most relevant passages using FAISS and accompanying metadata."""
try:
print(f"\nπ Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"β Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""Generate an answer using the OpenAI GPT model with formatted citations."""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
system_message = (
"You are an AI specialized in Indian spiritual texts. "
"Answer based on context, summarizing ideas rather than quoting verbatim. "
"Ensure proper citation and do not include direct excerpts."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
try:
llm_model = st.secrets["LLM_MODEL"]
except KeyError:
print("β Error: LLM model not found in secrets")
return "I apologize, but I'm unable to answer at the moment."
response = openai.chat.completions.create(
model=llm_model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
answer = response.choices[0].message.content.strip()
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"β LLM API error: {str(e)}")
return "I apologize, but I'm unable to answer at the moment."
def format_citations(sources):
"""Format citations so that each appears on a new line, ending with proper punctuation."""
formatted_citations = []
for title, author, publisher in sources:
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"π {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"π {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
# =============================================================================
# DATA CACHING FOR QUERY RESULTS
# =============================================================================
@st.cache_data(ttl=3600, show_spinner=False)
def cached_process_query(query, top_k=5, word_limit=100):
"""Cached query processing to avoid redundant computation for repeated queries."""
print(f"\nπ Processing query (cached): {query}")
faiss_index, text_chunks, metadata_dict = cached_load_data_files()
if faiss_index is None or text_chunks is None or metadata_dict is None:
return {
"query": query,
"answer_with_rag": "β οΈ System error: Data files not loaded properly.",
"citations": "No citations available."
}
retrieved_context, retrieved_sources = retrieve_passages(
query,
faiss_index,
text_chunks,
metadata_dict,
top_k=top_k
)
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "β οΈ No relevant context found."
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
def process_query(query, top_k=5, word_limit=100):
"""Process a query through the RAG pipeline with proper formatting.
This function wraps the cached query processing.
"""
return cached_process_query(query, top_k, word_limit)
# Alias for backward compatibility.
load_model = cached_load_model |