File size: 13,911 Bytes
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
6aa479a
62d1e75
2311e2d
 
 
6aa479a
 
 
 
 
62d1e75
db4ca04
 
 
62d1e75
db4ca04
 
 
2311e2d
6aa479a
 
c440b0b
ef4e95d
 
3188460
ef4e95d
3188460
ef4e95d
 
6aa479a
72511f1
c440b0b
72511f1
6aa479a
c440b0b
 
db4ca04
6aa479a
c440b0b
6aa479a
 
c440b0b
 
db4ca04
c440b0b
6aa479a
62d1e75
 
3b2ec72
62d1e75
db4ca04
 
 
 
2311e2d
 
 
 
c440b0b
2311e2d
 
ef4e95d
 
3188460
 
 
 
ef4e95d
 
 
 
db4ca04
87dead9
 
 
 
 
 
c440b0b
87dead9
2311e2d
 
 
 
 
 
 
 
 
 
db4ca04
2311e2d
 
 
 
 
 
 
 
 
6aa479a
2311e2d
 
 
 
 
6aa479a
2311e2d
 
 
 
db4ca04
2311e2d
62d1e75
db4ca04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d1e75
 
 
 
 
db4ca04
62d1e75
 
 
db4ca04
62d1e75
 
ff4d9c5
62d1e75
db4ca04
6aa479a
 
 
 
3b2ec72
ff4d9c5
 
 
 
 
 
 
 
 
 
 
 
 
c440b0b
 
ff4d9c5
 
 
 
c440b0b
62d1e75
adff5e8
db4ca04
62d1e75
 
 
adff5e8
62d1e75
 
 
 
 
 
adff5e8
 
62d1e75
 
 
 
adff5e8
62d1e75
 
 
 
db4ca04
62d1e75
 
 
 
 
 
 
 
 
db4ca04
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef4e95d
3188460
ef4e95d
 
 
 
62d1e75
ef4e95d
62d1e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38deecc
db4ca04
f637309
 
 
 
 
 
 
38deecc
db4ca04
 
 
 
 
 
 
 
 
c440b0b
 
 
 
 
 
2311e2d
 
adff5e8
 
 
2311e2d
 
62d1e75
 
 
 
 
 
db4ca04
62d1e75
db4ca04
 
 
 
024dec5
 
05a1de8
024dec5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
import gc

# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""

# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"

# =============================================================================
# RESOURCE CACHING
# =============================================================================

@st.cache_resource(show_spinner=False)
def cached_load_model():
    """Cached version of load_model() for embedding model loading."""
    try:
        # Force model to CPU
        device = torch.device("cpu")
        
        # Get embedding model path from secrets
        try:
            embedding_model = st.secrets["EMBEDDING_MODEL"]
        except KeyError:
            print("❌ Error: Embedding model path not found in secrets")
            return None, None
            
        # Load tokenizer and model
        tokenizer = AutoTokenizer.from_pretrained(embedding_model)
        model = AutoModel.from_pretrained(
            embedding_model,
            torch_dtype=torch.float16
        )
        
        # Move model to CPU and set to eval mode
        model = model.to(device)
        model.eval()
        
        # Disable gradient computation
        torch.set_grad_enabled(False)
        
        print("βœ… Model loaded successfully (cached)")
        return tokenizer, model
        
    except Exception as e:
        print(f"❌ Error loading model: {str(e)}")
        return None, None

@st.cache_resource(show_spinner=False)
def cached_load_data_files():
    """Cached version of load_data_files() for FAISS index, text chunks, and metadata."""
    # Initialize GCP and OpenAI clients
    bucket = setup_gcp_client()
    openai_initialized = setup_openai_client()
    
    if not bucket or not openai_initialized:
        print("Failed to initialize required services")
        return None, None, None
    
    # Get GCS paths from secrets - required
    try:
        metadata_file_gcs = st.secrets["METADATA_PATH_GCS"]
        embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"]
        faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"]
        text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"]
    except KeyError as e:
        print(f"❌ Error: Required GCS path not found in secrets: {e}")
        return None, None, None
    
    # Download necessary files if not already present locally
    success = True
    success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
    success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
    success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
    
    if not success:
        print("Failed to download required files")
        return None, None, None
    
    # Load FAISS index
    try:
        faiss_index = faiss.read_index(local_faiss_index_file)
    except Exception as e:
        print(f"❌ Error loading FAISS index: {str(e)}")
        return None, None, None
    
    # Load text chunks
    try:
        text_chunks = {}  # Mapping: ID -> (Title, Author, Text)
        with open(local_text_chunks_file, "r", encoding="utf-8") as f:
            for line in f:
                parts = line.strip().split("\t")
                if len(parts) == 4:
                    text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
    except Exception as e:
        print(f"❌ Error loading text chunks: {str(e)}")
        return None, None, None
    
    # Load metadata
    try:
        metadata_dict = {}
        with open(local_metadata_file, "r", encoding="utf-8") as f:
            for line in f:
                item = json.loads(line)
                metadata_dict[item["Title"]] = item
    except Exception as e:
        print(f"❌ Error loading metadata: {str(e)}")
        return None, None, None
    
    print(f"βœ… Data loaded successfully (cached): {len(text_chunks)} passages available")
    return faiss_index, text_chunks, metadata_dict

# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================

def setup_gcp_client():
    try:
        credentials = setup_gcp_auth()
        try:
            bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"]
        except KeyError:
            print("❌ Error: GCS bucket name not found in secrets")
            return None
            
        storage_client = storage.Client(credentials=credentials)
        bucket = storage_client.bucket(bucket_name_gcs)
        print("βœ… GCP client initialized successfully")
        return bucket
    except Exception as e:
        print(f"❌ GCP client initialization error: {str(e)}")
        return None

def setup_openai_client():
    try:
        setup_openai_auth()
        print("βœ… OpenAI client initialized successfully")
        return True
    except Exception as e:
        print(f"❌ OpenAI client initialization error: {str(e)}")
        return False

def download_file_from_gcs(bucket, gcs_path, local_path):
    """Download a file from GCS to local storage if not already present."""
    try:
        if os.path.exists(local_path):
            print(f"File already exists locally: {local_path}")
            return True
            
        blob = bucket.blob(gcs_path)
        blob.download_to_filename(local_path)
        print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
        return True
    except Exception as e:
        print(f"❌ Error downloading {gcs_path}: {str(e)}")
        return False

def average_pool(last_hidden_states, attention_mask):
    """Average pooling for sentence embeddings."""
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

# In-memory cache for query embeddings
query_embedding_cache = {}

def get_embedding(text):
    """Generate embeddings for a text query using the cached model."""
    if text in query_embedding_cache:
        return query_embedding_cache[text]

    try:
        tokenizer, model = cached_load_model()
        if model is None:
            print("Model is None, returning zero embedding")
            return np.zeros((1, 384), dtype=np.float32)
            
        input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
        inputs = tokenizer(
            input_text,
            padding=True,
            truncation=True,
            return_tensors="pt",
            max_length=512,
            return_attention_mask=True
        )
        with torch.no_grad():
            outputs = model(**inputs)
            embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
            embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
            embeddings = embeddings.detach().cpu().numpy()
        del outputs, inputs
        gc.collect()
        query_embedding_cache[text] = embeddings
        return embeddings
    except Exception as e:
        print(f"❌ Embedding error: {str(e)}")
        return np.zeros((1, 384), dtype=np.float32)

def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
    """Retrieve top-k most relevant passages using FAISS and accompanying metadata."""
    try:
        print(f"\nπŸ” Retrieving passages for query: {query}")
        query_embedding = get_embedding(query)
        distances, indices = faiss_index.search(query_embedding, top_k * 2)
        print(f"Found {len(distances[0])} potential matches")
        retrieved_passages = []
        retrieved_sources = []
        cited_titles = set()
        for dist, idx in zip(distances[0], indices[0]):
            print(f"Distance: {dist:.4f}, Index: {idx}")
            if idx in text_chunks and dist >= similarity_threshold:
                title_with_txt, author, text = text_chunks[idx]
                clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
                clean_title = unicodedata.normalize("NFC", clean_title)
                if clean_title in cited_titles:
                    continue  
                metadata_entry = metadata_dict.get(clean_title, {})
                author = metadata_entry.get("Author", "Unknown")
                publisher = metadata_entry.get("Publisher", "Unknown")
                cited_titles.add(clean_title)
                retrieved_passages.append(text)
                retrieved_sources.append((clean_title, author, publisher))
                if len(retrieved_passages) == top_k:
                    break
        print(f"Retrieved {len(retrieved_passages)} passages")
        return retrieved_passages, retrieved_sources
    except Exception as e:
        print(f"❌ Error in retrieve_passages: {str(e)}")
        return [], []

def answer_with_llm(query, context=None, word_limit=100):
    """Generate an answer using the OpenAI GPT model with formatted citations."""
    try:
        if context:
            formatted_contexts = []
            total_chars = 0
            max_context_chars = 4000  
            for (title, author, publisher), text in context:
                remaining_space = max(0, max_context_chars - total_chars)
                excerpt_len = min(150, remaining_space)
                if excerpt_len > 50:
                    excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
                    formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
                    formatted_contexts.append(formatted_context)
                    total_chars += len(formatted_context)
                if total_chars >= max_context_chars:
                    break
            formatted_context = "\n".join(formatted_contexts)
        else:
            formatted_context = "No relevant information available."

        system_message = (
            "You are an AI specialized in Indian spiritual texts. "
            "Answer based on context, summarizing ideas rather than quoting verbatim. "
            "Ensure proper citation and do not include direct excerpts."
        )
        user_message = f"""
        Context:
        {formatted_context}
        Question:
        {query}
        """

        try:
            llm_model = st.secrets["LLM_MODEL"]
        except KeyError:
            print("❌ Error: LLM model not found in secrets")
            return "I apologize, but I'm unable to answer at the moment."
            
        response = openai.chat.completions.create(
            model=llm_model,
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": user_message}
            ],
            max_tokens=200,
            temperature=0.7
        )
        answer = response.choices[0].message.content.strip()
        words = answer.split()
        if len(words) > word_limit:
            answer = " ".join(words[:word_limit])
            if not answer.endswith((".", "!", "?")):
                answer += "."
        return answer
    except Exception as e:
        print(f"❌ LLM API error: {str(e)}")
        return "I apologize, but I'm unable to answer at the moment."

def format_citations(sources):
    """Format citations so that each appears on a new line, ending with proper punctuation."""
    formatted_citations = []
    for title, author, publisher in sources:
        if publisher.endswith(('.', '!', '?')):
            formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
        else:
            formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
    return "\n".join(formatted_citations)

# =============================================================================
# DATA CACHING FOR QUERY RESULTS
# =============================================================================

@st.cache_data(ttl=3600, show_spinner=False)
def cached_process_query(query, top_k=5, word_limit=100):
    """Cached query processing to avoid redundant computation for repeated queries."""
    print(f"\nπŸ” Processing query (cached): {query}")
    faiss_index, text_chunks, metadata_dict = cached_load_data_files()
    if faiss_index is None or text_chunks is None or metadata_dict is None:
        return {
            "query": query, 
            "answer_with_rag": "⚠️ System error: Data files not loaded properly.", 
            "citations": "No citations available."
        }
    retrieved_context, retrieved_sources = retrieve_passages(
        query, 
        faiss_index, 
        text_chunks, 
        metadata_dict,
        top_k=top_k
    )
    sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
    if retrieved_context:
        context_with_sources = list(zip(retrieved_sources, retrieved_context))
        llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
    else:
        llm_answer_with_rag = "⚠️ No relevant context found."
    return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}

def process_query(query, top_k=5, word_limit=100):
    """Process a query through the RAG pipeline with proper formatting.
       This function wraps the cached query processing.
    """
    return cached_process_query(query, top_k, word_limit)

# Alias for backward compatibility.
load_model = cached_load_model