Image-Resize / app.py
Zeph27's picture
change thread value
083d498
raw
history blame
9.77 kB
import os
import zipfile
import shutil
import time
from PIL import Image
import io
from rembg import remove
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from transformers import pipeline
def resize_and_crop_image(image_path, target_size=(1080, 1080), crop_mode='center'):
with Image.open(image_path) as img:
width, height = img.size
# Calculate the scaling factor
scaling_factor = max(target_size[0] / width, target_size[1] / height)
# Resize the image with high-quality resampling
new_size = (int(width * scaling_factor), int(height * scaling_factor))
resized_img = img.resize(new_size, Image.LANCZOS)
if crop_mode == 'center':
left = (resized_img.width - target_size[0]) / 2
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'top':
left = (resized_img.width - target_size[0]) / 2
top = 0
elif crop_mode == 'bottom':
left = (resized_img.width - target_size[0]) / 2
top = resized_img.height - target_size[1]
elif crop_mode == 'left':
left = 0
top = (resized_img.height - target_size[1]) / 2
elif crop_mode == 'right':
left = resized_img.width - target_size[0]
top = (resized_img.height - target_size[1]) / 2
right = left + target_size[0]
bottom = top + target_size[1]
# Crop the image
cropped_img = resized_img.crop((left, top, right, bottom))
return cropped_img
def remove_background_rembg(input_path):
with open(input_path, 'rb') as i:
input_image = i.read()
output_image = remove(input_image)
img = Image.open(io.BytesIO(output_image)).convert("RGBA")
return img
def remove_background_bria(input_path):
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
pillow_image = pipe(input_path) # applies mask on input and returns a pillow image
return pillow_image
def process_single_image(image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path=None):
filename = os.path.basename(image_path)
try:
if remove_bg == 'yes':
if bg_method == 'rembg':
# Remove background using rembg
image_with_no_bg = remove_background_rembg(image_path)
elif bg_method == 'bria':
# Remove background using bria
image_with_no_bg = remove_background_bria(image_path)
temp_image_path = os.path.join(output_folder, f"temp_{filename}")
image_with_no_bg.save(temp_image_path, format='PNG')
else:
temp_image_path = image_path
# Resize and crop the image with or without background removal
new_image = resize_and_crop_image(temp_image_path, crop_mode=crop_mode)
# Save both versions of the image (with and without watermark)
images_paths = []
# Save without watermark
output_ext = 'jpg' if output_format == 'JPG' else 'png'
output_path_without_watermark = os.path.join(output_folder, f"without_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image.convert('RGB').save(output_path_without_watermark, format='JPEG')
else:
new_image.save(output_path_without_watermark, format='PNG')
images_paths.append(output_path_without_watermark)
# Apply watermark if provided and save the version with watermark
if watermark_path:
watermark = Image.open(watermark_path).convert("RGBA")
new_image_with_watermark = new_image.copy()
new_image_with_watermark.paste(watermark, (0, 0), watermark)
output_path_with_watermark = os.path.join(output_folder, f"with_watermark_{os.path.splitext(filename)[0]}.{output_ext}")
if output_format == 'JPG':
new_image_with_watermark.convert('RGB').save(output_path_with_watermark, format='JPEG')
else:
new_image_with_watermark.save(output_path_with_watermark, format='PNG')
images_paths.append(output_path_with_watermark)
if remove_bg == 'yes':
# Remove the temporary file
os.remove(temp_image_path)
return images_paths
except Exception as e:
print(f"Error processing {filename}: {e}")
return None
def process_images(zip_file, crop_mode='center', remove_bg='yes', bg_method='rembg', watermark_path=None, output_format='PNG', bg_choice='transparent', num_workers=4, progress=gr.Progress()):
start_time = time.time()
# Create a temporary directory
input_folder = "temp_input"
output_folder = "temp_output"
if os.path.exists(input_folder):
shutil.rmtree(input_folder)
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(input_folder)
os.makedirs(output_folder)
# Extract the zip file
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(input_folder)
processed_images = []
image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
total_images = len(image_files)
# Process images using ThreadPoolExecutor for I/O-bound tasks and ProcessPoolExecutor for CPU-bound tasks
with ThreadPoolExecutor(max_workers=num_workers) as thread_executor:
with ProcessPoolExecutor(max_workers=num_workers) as process_executor:
future_to_image = {thread_executor.submit(process_single_image, image_path, output_folder, crop_mode, remove_bg, bg_method, output_format, bg_choice, watermark_path): image_path for image_path in image_files}
for idx, future in enumerate(future_to_image):
result = future.result()
if result:
processed_images.extend(result)
# Update progress
progress((idx + 1) / total_images, f"{idx + 1}/{total_images} images processed")
# Create a zip file of the processed images
output_zip_path = "processed_images.zip"
with zipfile.ZipFile(output_zip_path, 'w') as zipf:
for file in processed_images:
if "with_watermark" in file:
zipf.write(file, os.path.join("with_watermark", os.path.basename(file)))
else:
zipf.write(file, os.path.join("without_watermark", os.path.basename(file)))
end_time = time.time()
processing_time = end_time - start_time
# Return the images, the zip file path, and processing time
return processed_images, output_zip_path, processing_time
def gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
progress = gr.Progress() # Initialize progress
watermark_path = watermark.name if watermark else None
return process_images(zip_file.name, crop_mode, remove_bg, bg_method, watermark_path, output_format, bg_choice, num_workers, progress)
def show_bg_choice(remove_bg, output_format):
if remove_bg == 'yes' and output_format == 'PNG':
return gr.update(visible=True)
return gr.update(visible=False)
def show_bg_method(remove_bg):
if remove_bg == 'yes':
return gr.update(visible=True)
return gr.update(visible=False)
# Create the Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Image Background Removal and Resizing with Optional Watermark")
gr.Markdown("Upload a ZIP or RAR file containing images, choose the crop mode, optionally upload a watermark image, and select the output format.")
with gr.Row():
zip_file = gr.File(label="Upload ZIP/RAR file of images", file_types=[".zip", ".rar"])
watermark = gr.File(label="Upload Watermark Image (Optional)", file_types=[".png"])
with gr.Row():
crop_mode = gr.Radio(choices=["center", "top", "bottom", "left", "right"], label="Crop Mode", value="center")
remove_bg = gr.Radio(choices=["yes", "no"], label="Remove Background", value="yes")
output_format = gr.Radio(choices=["PNG", "JPG"], label="Output Format", value="PNG")
num_workers = gr.Slider(minimum=1, maximum=16, step=1, label="Number of Workers", value=2)
with gr.Row():
bg_method = gr.Radio(choices=["bria", "rembg"], label="Background Removal Method", value="bria", visible=True)
bg_choice = gr.Radio(choices=["transparent", "white"], label="Background Choice", value="transparent", visible=True)
remove_bg.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)
remove_bg.change(show_bg_method, inputs=remove_bg, outputs=bg_method)
output_format.change(show_bg_choice, inputs=[remove_bg, output_format], outputs=bg_choice)
gallery = gr.Gallery(label="Processed Images")
output_zip = gr.File(label="Download Processed Images as ZIP")
processing_time = gr.Textbox(label="Processing Time (seconds)")
def process(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers):
processed_images, zip_path, time_taken = gradio_interface(zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers)
return processed_images, zip_path, f"{time_taken:.2f} seconds"
process_button = gr.Button("Process Images")
process_button.click(process, inputs=[zip_file, crop_mode, remove_bg, bg_method, watermark, output_format, bg_choice, num_workers], outputs=[gallery, output_zip, processing_time])
# Launch the interface
iface.launch()