|
## Nvidia Triton Inference Serving Best Practice for Spark TTS |
|
|
|
### Quick Start |
|
Directly launch the service using docker compose. |
|
```sh |
|
docker compose up |
|
``` |
|
|
|
### Build Image |
|
Build the docker image from scratch. |
|
```sh |
|
docker build . -f Dockerfile.server -t soar97/triton-spark-tts:25.02 |
|
``` |
|
|
|
### Create Docker Container |
|
```sh |
|
your_mount_dir=/mnt:/mnt |
|
docker run -it --name "spark-tts-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-spark-tts:25.02 |
|
``` |
|
|
|
### Understanding `run.sh` |
|
|
|
The `run.sh` script automates various steps using stages. You can run specific stages using: |
|
```sh |
|
bash run.sh <start_stage> <stop_stage> [service_type] |
|
``` |
|
- `<start_stage>`: The stage to begin execution from (0-5). |
|
- `<stop_stage>`: The stage to end execution at (0-5). |
|
- `[service_type]`: Optional, specifies the service type ('streaming' or 'offline', defaults may apply based on script logic). Required for stages 4 and 5. |
|
|
|
Stages: |
|
- **Stage 0**: Download Spark-TTS-0.5B model from HuggingFace. |
|
- **Stage 1**: Convert HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines. |
|
- **Stage 2**: Create the Triton model repository structure and configure model files (adjusts for streaming/offline). |
|
- **Stage 3**: Launch the Triton Inference Server. |
|
- **Stage 4**: Run the gRPC benchmark client. |
|
- **Stage 5**: Run the single utterance client (gRPC for streaming, HTTP for offline). |
|
|
|
### Export Models to TensorRT-LLM and Launch Server |
|
Inside the docker container, you can prepare the models and launch the Triton server by running stages 0 through 3. This involves downloading the original model, converting it to TensorRT-LLM format, building the optimized TensorRT engines, creating the necessary model repository structure for Triton, and finally starting the server. |
|
```sh |
|
# This runs stages 0, 1, 2, and 3 |
|
bash run.sh 0 3 |
|
``` |
|
*Note: Stage 2 prepares the model repository differently based on whether you intend to run streaming or offline inference later. You might need to re-run stage 2 if switching service types.* |
|
|
|
|
|
### Single Utterance Client |
|
Run a single inference request. Specify `streaming` or `offline` as the third argument. |
|
|
|
**Streaming Mode (gRPC):** |
|
```sh |
|
bash run.sh 5 5 streaming |
|
``` |
|
This executes the `client_grpc.py` script with predefined example text and prompt audio in streaming mode. |
|
|
|
**Offline Mode (HTTP):** |
|
```sh |
|
bash run.sh 5 5 offline |
|
``` |
|
|
|
### Benchmark using Dataset |
|
Run the benchmark client against the running Triton server. Specify `streaming` or `offline` as the third argument. |
|
```sh |
|
# Run benchmark in streaming mode |
|
bash run.sh 4 4 streaming |
|
|
|
# Run benchmark in offline mode |
|
bash run.sh 4 4 offline |
|
|
|
# You can also customize parameters like num_task directly in client_grpc.py or via args if supported |
|
# Example from run.sh (streaming): |
|
# python3 client_grpc.py \ |
|
# --server-addr localhost \ |
|
# --model-name spark_tts \ |
|
# --num-tasks 2 \ |
|
# --mode streaming \ |
|
# --log-dir ./log_concurrent_tasks_2_streaming_new |
|
|
|
# Example customizing dataset (requires modifying client_grpc.py or adding args): |
|
# python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts --mode [streaming|offline] |
|
``` |
|
|
|
### Benchmark Results |
|
Decoding on a single L20 GPU, using 26 different prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts), total audio duration 169 secs. |
|
|
|
| Mode | Note | Concurrency | Avg Latency | First Chunk Latency (P50) | RTF | |
|
|-------|-----------|-----------------------|---------|----------------|-| |
|
| Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 1 | 876.24 ms |-| 0.1362| |
|
| Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 2 | 920.97 ms |-|0.0737| |
|
| Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 4 | 1611.51 ms |-| 0.0704| |
|
| Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 1 | 913.28 ms |210.42 ms| 0.1501 | |
|
| Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 2 | 1009.23 ms |226.08 ms |0.0862 | |
|
| Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 4 | 1793.86 ms |1017.70 ms| 0.0824 | |