ashwml's picture
Update app.py
c20bcc4
raw
history blame
2.64 kB
import gradio as gr
# import pickle
# import numpy as np
# from fastapi import FastAPI,Response
# from sklearn.metrics import accuracy_score, f1_score
# import prometheus_client as prom
# import pandas as pd
# import uvicorn
from transformers import VisionEncoderDecoderModel,pipeline, ViTImageProcessor, AutoTokenizer
import torch
#model
# loaded_model = pickle.load(open(save_file_name, 'rb'))
# app=FastAPI()
# test_data=pd.read_csv("test.csv")
# f1_metric = prom.Gauge('death_f1_score', 'F1 score for test samples')
# Function for updating metrics
# def update_metrics():
# test = test_data.sample(20)
# X = test.iloc[:, :-1].values
# y = test['DEATH_EVENT'].values
# # test_text = test['Text'].values
# test_pred = loaded_model.predict(X)
# #pred_labels = [int(pred['label'].split("_")[1]) for pred in test_pred]
# f1 = f1_score( y , test_pred).round(3)
# #f1 = f1_score(test['labels'], pred_labels).round(3)
# f1_metric.set(f1)
vitgpt_processor = ViTImageProcessor.from_pretrained("model")
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("model")
vitgpt_tokenizer = AutoTokenizer.from_pretrained("model", return_tensors="pt")
device = "cuda" if torch.cuda.is_available() else "cpu"
vitgpt_model.to(device)
def generate_caption(processor, model, image, tokenizer=None):
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
if tokenizer is not None:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def predict_event(input):
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
return caption_vitgpt
# @app.get("/metrics")
# async def get_metrics():
# update_metrics()
# return Response(media_type="text/plain", content= prom.generate_latest())
title = "capstone"
description = "final capstone"
out_response = gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")
iface = gr.Interface(fn=predict_event,
inputs=gr.inputs.Image(type="pil"),
outputs=out_response,
enable_queue=True)
# app = gr.mount_gradio_app(app, iface, path="/")
iface.launch(server_name = "0.0.0.0", server_port = 8001)
# if __name__ == "__main__":
# Use this for debugging purposes only
# uvicorn.run(app, host="0.0.0.0", port=8001)