File size: 19,786 Bytes
b08dda1
 
 
 
2855c1d
b08dda1
 
 
 
 
 
 
2855c1d
b08dda1
 
 
2855c1d
b08dda1
 
 
 
 
 
 
 
 
 
 
 
 
 
d0eb201
b08dda1
 
493e261
b08dda1
493e261
b08dda1
493e261
 
b08dda1
 
 
2855c1d
b08dda1
2855c1d
 
b08dda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855c1d
b08dda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855c1d
b08dda1
 
 
2855c1d
b08dda1
2855c1d
493e261
2855c1d
 
 
 
 
 
 
 
 
 
b08dda1
2855c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08dda1
 
 
 
 
 
 
 
 
 
 
 
493e261
 
b08dda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493e261
b08dda1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855c1d
b08dda1
 
2855c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08dda1
2855c1d
 
 
 
b08dda1
2855c1d
 
 
 
 
 
 
b08dda1
2855c1d
 
 
 
 
 
 
b08dda1
2855c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import torch
from transformers import AutoModel, AutoTokenizer
from modelscope.hub.snapshot_download import snapshot_download
from PIL import Image
from functools import lru_cache
from decord import VideoReader, cpu
import os
import gc
import cv2
import tempfile
import shutil
import subprocess
import ffmpeg # Added for ffmpeg-python
from yolo_detection import is_image, is_video

# Constants for video processing
MAX_NUM_FRAMES = 32 # Reduced from 64 to potentially avoid OOM

# Check if CUDA is available
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
global TOTAL_CHUNKS 
TOTAL_CHUNKS  = 1

# Initialize GPU if available
if DEVICE == "cuda":
    def debug():
        torch.randn(10).cuda()
    debug()

# Model configuration
MODEL_NAME = 'iic/mPLUG-Owl3-7B-240728'
MODEL_CACHE_DIR = "/data/models"
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)

# Download and cache the model
try:
    model_path = snapshot_download(MODEL_NAME, cache_dir=MODEL_CACHE_DIR)
except Exception as e:
    print(f"Error downloading model: {str(e)}")
    model_path = os.path.join(MODEL_CACHE_DIR, MODEL_NAME)


# Model configuration and existing functions remain unchanged...
@lru_cache(maxsize=1)
def load_model_and_tokenizer():
    """Load a cached instance of the model and tokenizer"""
    print("Loading/Retrieving mPLUG model from cache...")
    try:
        # Clear GPU memory if using CUDA
        if DEVICE == "cuda":
            torch.cuda.empty_cache()
            gc.collect()
        
        model = AutoModel.from_pretrained(
            model_path,
            attn_implementation='sdpa',
            trust_remote_code=True,
            torch_dtype=torch.half,
            device_map='auto'
        )

        tokenizer = AutoTokenizer.from_pretrained(
            model_path,
            trust_remote_code=True
        )
        model.eval()
        processor = model.init_processor(tokenizer)
        return model, tokenizer, processor
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        raise


def process_image(image_path, model, tokenizer, processor, prompt):
    """Process single image with mPLUG model"""
    try:
        image = Image.open(image_path)
        messages = [{
            "role": "user",
            "content": prompt,
            "images": [image]
        }]

        model_messages = []
        images = []

        for msg in messages:
            content_str = msg["content"]
            if "images" in msg and msg["images"]:
                content_str += "<|image|>"
                images.extend(msg["images"])
            model_messages.append({
                "role": msg["role"],
                "content": content_str
            })

        model_messages.append({
            "role": "assistant",
            "content": ""
        })

        inputs = processor(
            model_messages,
            images=images,
            videos=None
        )
        inputs.to('cuda')
        inputs.update({
            'tokenizer': tokenizer,
            'max_new_tokens': 100,
            'decode_text': True,
        })

        response = model.generate(**inputs)
        return response[0]
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        return "Error processing image"

def process_video_chunk(video_frames, model, tokenizer, processor, prompt):
    """Process a chunk of video frames with mPLUG model"""
    messages = [
        {
            "role": "user",
            "content": prompt,
            "video_frames": video_frames
        }
    ]

    model_messages = []
    videos = []

    for msg in messages:
        content_str = msg["content"]
        if "video_frames" in msg and msg["video_frames"]:
            content_str += "<|video|>"
            videos.append(msg["video_frames"])
        model_messages.append({
            "role": msg["role"],
            "content": content_str
        })

    model_messages.append({
        "role": "assistant",
        "content": ""
    })

    inputs = processor(
        model_messages,
        images=None,
        videos=videos if videos else None
    )
    inputs.to('cuda')
    inputs.update({
        'tokenizer': tokenizer,
        'max_new_tokens': 100,
        'decode_text': True,
    })

    response = model.generate(**inputs)
    del inputs
    return response[0]

def split_original_video(video_path, chunk_info):
    """Split original video into chunks using multiple methods with fallbacks for cross-platform reliability"""
    original_chunks = []
    # Clean the ./tmp directory containing chunks/thumbnails
    tmp_dir = os.path.join('.', 'tmp')
    if os.path.exists(tmp_dir):
        try:
            shutil.rmtree(tmp_dir)
            os.makedirs(tmp_dir, exist_ok=True) # Recreate for next run
            print(f"Cleaned up temporary directory: {tmp_dir}")
        except OSError as e:
            print(f"Error removing temporary directory {tmp_dir}: {e}")
    else:
        os.makedirs(tmp_dir)
        
    for chunk in chunk_info:
        chunk_id = chunk['chunk_id']
        start_time = chunk['start_time']
        end_time = chunk['end_time']
        output_path = os.path.join(tmp_dir, f"original_chunk_{chunk_id}.mp4")

        # Try three different methods in order of preference
        chunk_created = False

        # Method 1: Try ffmpeg-python library
        if not chunk_created:
            try:
                (
                    ffmpeg
                    .input(video_path, ss=start_time, to=end_time)
                    .output(output_path, c='copy', loglevel="quiet") # Added loglevel quiet
                    .run(capture_stdout=True, capture_stderr=True)
                )
                # Check if file exists and is not empty after ffmpeg-python call
                if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
                    chunk_created = True
                    print(f"Successfully created chunk {chunk_id} using ffmpeg-python")
                else:
                     print(f"ffmpeg-python ran but did not create a valid file for chunk {chunk_id}")
                     # Optionally raise an exception here if needed, or just let it proceed to next method
            except ffmpeg.Error as e: # Catch specific ffmpeg errors
                print(f"ffmpeg-python error for chunk {chunk_id}: {e.stderr.decode() if e.stderr else str(e)}, trying OpenCV method")
            except Exception as e: # Catch other potential errors like file not found
                print(f"ffmpeg-python failed with general error for chunk {chunk_id}: {str(e)}, trying OpenCV method")

        # Method 2: Try OpenCV for video splitting (re-encoding)
        if not chunk_created:
            try:
                cap = cv2.VideoCapture(video_path)
                if not cap.isOpened():
                    raise IOError(f"Cannot open video file: {video_path}")

                fps = cap.get(cv2.CAP_PROP_FPS)
                if fps <= 0: # Handle case where fps is invalid
                    print(f"Warning: Invalid FPS ({fps}) detected for {video_path}. Using default 30.")
                    fps = 30.0

                width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))

                # Calculate frame positions
                start_frame = int(start_time * fps)
                end_frame = int(end_time * fps)

                # Set position to start frame
                cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
                current_frame = start_frame

                while current_frame < end_frame:
                    ret, frame = cap.read()
                    if not ret:
                        print(f"Warning: Could not read frame {current_frame} for chunk {chunk_id}. Reached end of video early?")
                        break # Stop if we can't read a frame
                    out.write(frame)
                    current_frame += 1

                cap.release()
                out.release()

                # Check if file exists and is not empty after OpenCV call
                if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
                    chunk_created = True
                    print(f"Successfully created chunk {chunk_id} using OpenCV")
                else:
                    print(f"OpenCV method ran but did not create a valid file for chunk {chunk_id}")

            except Exception as e:
                print(f"OpenCV method failed for chunk {chunk_id}: {str(e)}, trying subprocess method")
                # Clean up potentially empty file created by OpenCV on error
                if os.path.exists(output_path):
                    try:
                        os.remove(output_path)
                    except OSError:
                        pass # Ignore cleanup error

        # Method 3: Last resort - Try subprocess with better error handling
        if not chunk_created:
            try:
                cmd = [
                    'ffmpeg',
                    '-ss', str(start_time),
                    '-to', str(end_time),
                    '-i', video_path,
                    '-c', 'copy', # Attempt copy first
                    '-loglevel', 'error', # Reduce log noise
                    output_path
                ]

                process = subprocess.run(cmd, capture_output=True, text=True, check=False) # Don't check=True initially

                if process.returncode != 0 or not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
                    print(f"Subprocess ffmpeg copy failed for chunk {chunk_id}. Stderr: {process.stderr}. Trying re-encoding.")
                    # If copy fails, try re-encoding as a fallback within subprocess
                    cmd_reencode = [
                        'ffmpeg',
                        '-ss', str(start_time),
                        '-to', str(end_time),
                        '-i', video_path,
                        # '-c:v', 'libx264', # Example re-encode, adjust as needed
                        # '-crf', '23',
                        # '-c:a', 'aac',
                        '-loglevel', 'error',
                        output_path
                    ]
                    # Ensure overwrite if previous attempt created an empty file
                    if os.path.exists(output_path):
                         cmd_reencode.insert(1, '-y') # Add overwrite flag

                    process_reencode = subprocess.run(cmd_reencode, capture_output=True, text=True, check=False)

                    if process_reencode.returncode != 0:
                         raise Exception(f"Subprocess ffmpeg re-encode also failed. Stderr: {process_reencode.stderr}")

                # Final check after subprocess attempts
                if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
                    chunk_created = True
                    print(f"Successfully created chunk {chunk_id} using subprocess ffmpeg")
                else:
                    raise Exception("Subprocess ffmpeg failed to create a valid file.")

            except FileNotFoundError:
                 print(f"Subprocess failed for chunk {chunk_id}: 'ffmpeg' command not found. Ensure ffmpeg is installed and in PATH.")
            except Exception as e:
                print(f"Subprocess method failed for chunk {chunk_id}: {str(e)}")
                # Clean up potentially empty file
                if os.path.exists(output_path):
                    try:
                        os.remove(output_path)
                    except OSError:
                        pass

        # If any method succeeded, add the chunk to our list
        if chunk_created and os.path.exists(output_path):
            original_chunks.append(output_path)
        else:
            print(f"Warning: Failed to create chunk {chunk_id} using all methods, skipping.")

    return original_chunks

def encode_video_in_chunks(video_path):
    """Extract frames from a video in chunks and save chunks to disk"""
    global TOTAL_CHUNKS
    vr = VideoReader(video_path, ctx=cpu(0))
    original_fps = vr.get_avg_fps()
    sample_fps = round(original_fps / 1)  # 1 FPS
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    fps = vr.get_avg_fps()

    # Create tmp directory if it doesn't exist
    tmp_dir = os.path.join('.', 'tmp')
    os.makedirs(tmp_dir, exist_ok=True)

    # Split frame indices into chunks
    chunks = [
        frame_idx[i:i + MAX_NUM_FRAMES]
        for i in range(0, len(frame_idx), MAX_NUM_FRAMES)
    ]
    
    # Set global TOTAL_CHUNKS before processing
    TOTAL_CHUNKS = len(chunks)
    print(f"Total chunks: {TOTAL_CHUNKS}")

    # Information about saved chunks
    chunk_info = []

    for chunk_idx, chunk in enumerate(chunks):
        # Get frames for this chunk
        frames = vr.get_batch(chunk).asnumpy()
        frames_pil = [Image.fromarray(v.astype('uint8')) for v in frames]
        
        # Save chunk as a video file
        chunk_path = os.path.join(tmp_dir, f"chunk_{chunk_idx}.mp4")
        
        # Calculate start and end times for this chunk
        if chunk:
            start_frame = chunk[0]
            end_frame = chunk[-1]
            start_time = start_frame / fps
            end_time = end_frame / fps
            
            # Save chunk info for later use
            chunk_info.append({
                'chunk_id': chunk_idx,
                'path': chunk_path,
                'start_time': start_time,
                'end_time': end_time,
                'start_frame': start_frame,
                'end_frame': end_frame,
                'original_fps': fps  # Use actual fps from video
            })
            
            # Use OpenCV to create video from frames
            height, width, _ = frames[0].shape
            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            out = cv2.VideoWriter(chunk_path, fourcc, fps, (width, height))
            
            for frame in frames:
                # Convert RGB to BGR (OpenCV format)
                frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                out.write(frame_bgr)
            
            out.release()
            print(f"Saved chunk {chunk_idx} to {chunk_path}")

        yield chunk_idx, frames_pil, chunk_info[-1] if chunk_info else None

    # Split original video after processing all chunks
    original_chunks = split_original_video(video_path, chunk_info)

def analyze_image_activities(image_path):
    """Analyze construction site image and generate activity description"""
    from datetime import datetime, timedelta
    try:
        # Sample structured response - Replace with actual model processing
        return [
            {
                'time': datetime.now().strftime("%I:%M %p"),
                'summary': 'Excavation work in progress',
                'objects': ['excavator', 'worker', 'dump-truck']
            },
            {
                'time': (datetime.now() - timedelta(minutes=30)).strftime("%I:%M %p"),
                'summary': 'Material loading operation',
                'objects': ['loader', 'worker', 'gravel']
            }
        ]
    except Exception as e:
        print(f"Error analyzing image: {str(e)}")
        return []  # Return empty list on error
    

def generate_thumbnails(video_path, num_chunks):
    """Extract thumbnails for each chunk
    Args:
        video_path: Path to video file
        num_chunks: Number of chunks to generate thumbnails for
    """
    vr = VideoReader(video_path, ctx=cpu(0))
    thumbnails = []
    total_frames = len(vr)
    
    # Create/clear tmp directory in current working directory
    tmp_dir = os.path.join('.', 'tmp')
    # Remove existing directory if it exists
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
    os.makedirs(tmp_dir, exist_ok=True)
    
    # Calculate frame step size based on number of chunks
    frame_step = total_frames // num_chunks
    
    for chunk_idx in range(num_chunks):
        # Take frame at start of each chunk
        frame_idx = chunk_idx * frame_step
        if frame_idx < total_frames:
            frame = vr[frame_idx].asnumpy()
            img = Image.fromarray(frame)
            temp_path = os.path.join(tmp_dir, f"thumbnail_{chunk_idx}.jpg")
            img.save(temp_path)
            thumbnails.append({
                "path": temp_path,
                "time": frame_idx/vr.get_avg_fps()
            })
    
    return thumbnails

def analyze_video_activities(video_path, model, tokenizer, processor):
    """Analyze video using mPLUG model with chunking"""
    global TOTAL_CHUNKS
    # try:
    # Existing chunk processing
    all_activities = []
    # Calculate total chunks first
    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    TOTAL_CHUNKS = len([frame_idx[i:i + MAX_NUM_FRAMES] 
                        for i in range(0, len(frame_idx), MAX_NUM_FRAMES)])
    
    # Generate thumbnails with known chunk count
    thumbnails = generate_thumbnails(video_path, num_chunks=TOTAL_CHUNKS)
    
    # Now process chunks
    chunk_generator = encode_video_in_chunks(video_path)

    for chunk_idx, video_frames, chunk_info in chunk_generator:
        prompt = "Analyze this construction site video chunk and describe the activities happening. Focus on construction activities, machinery usage, and worker actions. Include any construction equipment or machinery you can identify."
        response = process_video_chunk(video_frames, model, tokenizer, processor, prompt)
        print(f"Chunk {chunk_idx}: {response}")
        
        # Map responses to thumbnails
        time_start = chunk_idx * MAX_NUM_FRAMES
        chunk_thumbnails = [t for t in thumbnails 
                            if time_start <= t['time'] < time_start + MAX_NUM_FRAMES]
        
        # Extract time from frame position
        for thumbnail in chunk_thumbnails:
            # Calculate timestamp in minutes:seconds format
            seconds = int(thumbnail['time'])
            minutes = seconds // 60
            seconds = seconds % 60
            timestamp = f"{minutes:02d}:{seconds:02d}"
            
            # Extract objects using basic text parsing from the response
            # In a production system, you might want to use more sophisticated NLP
            objects = []
            lower_response = response.lower()
            possible_objects = ["excavator", "bulldozer", "crane", "truck", "loader", 
                                "worker", "concrete", "scaffold", "beam", "pipe", 
                                "rebar", "formwork", "drill", "grader", "roller"]
            
            for obj in possible_objects:
                if obj in lower_response:
                    objects.append(obj)
            
            activity = {
                'time': timestamp,
                'timestamp_seconds': thumbnail['time'],  # Store raw seconds for sorting
                'summary': response,
                'objects': objects,
                'thumbnail': thumbnail["path"],
                'chunk_id': chunk_idx,
                'chunk_path': chunk_info['path'] if chunk_info else None
            }
            
            all_activities.append(activity)
    
    # Sort activities by timestamp
    all_activities.sort(key=lambda x: x['timestamp_seconds'])
    return all_activities
    # except Exception as e:
    #     print(f"Error analyzing video: {str(e)}")
    #     return []  # Maintain consistent return type