Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
from opik import track | |
import gradio as gr | |
import requests | |
from smolagents import DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool, LiteLLMModel, CodeAgent, tool , OpenAIServerModel , PythonInterpreterTool | |
from pathlib import Path | |
import pathlib | |
import tempfile | |
import PyPDF2 | |
from opik.integrations.openai import track_openai | |
import pytesseract | |
from PIL import Image | |
from smolagents.tools import PipelineTool, Tool | |
from typing import Union, Optional | |
import pandas as pd | |
from tabulate import tabulate # pragma: no cover β fallback path | |
import re | |
import opik | |
import time | |
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type, before_sleep_log | |
import logging | |
import random | |
import sys | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
GROQ_API_KEY = os.getenv("Grok_api") # set as Secret in your Space | |
OPIK_API_KEY = os.getenv("OPIK_API_KEY") # set as Secret in your Space | |
OPIK_WORKSPACE = os.getenv("OPIK_WORKSPACE") # set as Variable in your Space | |
# ββ 2) Configure litellm & OpikLogger βββββββββββββββββββββββββββββββββββββββββ | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
os.environ["OPIK_API_KEY"] = OPIK_API_KEY | |
os.environ["OPIK_WORKSPACE"] = OPIK_WORKSPACE | |
class ExcelToTextTool(Tool): | |
"""Render an Excel worksheet as Markdown text.""" | |
# ------------------------------------------------------------------ | |
# Required smolβagents metadata | |
# ------------------------------------------------------------------ | |
name = "excel_to_text" | |
description = ( | |
"Read an Excel file and return a Markdown table of the requested sheet. " | |
"Accepts either the sheet name or the zero-based index." | |
) | |
inputs = { | |
"excel_path": { | |
"type": "string", | |
"description": "Path to the Excel file (.xlsx / .xls).", | |
}, | |
"sheet_name": { | |
"type": "string", | |
"description": ( | |
"Worksheet name or zeroβbased index *as a string* (optional; default first sheet)." | |
), | |
"nullable": True, | |
}, | |
} | |
output_type = "string" | |
# ------------------------------------------------------------------ | |
# Core logic | |
# ------------------------------------------------------------------ | |
def forward( | |
self, | |
excel_path: str, | |
sheet_name: Optional[str] = None, | |
) -> str: | |
"""Load *excel_path* and return the sheet as a Markdown table.""" | |
path = pathlib.Path(excel_path).expanduser().resolve() | |
if not path.exists(): | |
return f"Error: Excel file not found at {path}" | |
try: | |
# Interpret sheet identifier ----------------------------------- | |
sheet: Union[str, int] | |
if sheet_name is None or sheet_name == "": | |
sheet = 0 # first sheet | |
else: | |
# If the user passed a numeric string (e.g. "1"), cast to int | |
sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name | |
# Load worksheet ---------------------------------------------- | |
df = pd.read_excel(path, sheet_name=sheet) | |
# Render to Markdown; fall back to tabulate if needed --------- | |
if hasattr(pd.DataFrame, "to_markdown"): | |
return df.to_markdown(index=False) | |
from tabulate import tabulate # pragma: no cover β fallback path | |
return tabulate(df, headers="keys", tablefmt="github", showindex=False) | |
except Exception as exc: # broad catch keeps the agent chatβfriendly | |
return f"Error reading Excel file: {exc}" | |
def download_file_if_any(base_api_url: str, task_id: str) -> str | None: | |
""" | |
Try GET /files/{task_id}. | |
β’ On HTTP 200 β save to a temp dir and return local path. | |
β’ On 404 β return None. | |
β’ On other errors β raise so caller can log / handle. | |
""" | |
url = f"{base_api_url}/files/{task_id}" | |
try: | |
resp = requests.get(url, timeout=30) | |
if resp.status_code == 404: | |
return None # no file | |
resp.raise_for_status() # raise on 4xx/5xx β 404 | |
except requests.exceptions.HTTPError as e: | |
# propagate non-404 errors (403, 500, β¦) | |
raise e | |
# βΈ Save bytes to a named file inside the system temp dir | |
# Try to keep original extension from Content-Disposition if present. | |
cdisp = resp.headers.get("content-disposition", "") | |
filename = task_id # default base name | |
if "filename=" in cdisp: | |
m = re.search(r'filename="([^"]+)"', cdisp) | |
if m: | |
filename = m.group(1) # keep provided name | |
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files" | |
tmp_dir.mkdir(exist_ok=True) | |
file_path = tmp_dir / filename | |
with open(file_path, "wb") as f: | |
f.write(resp.content) | |
return str(file_path) | |
def pdf_to_text_tool(pdf_path: str) -> str: | |
""" | |
Extract all text from a PDF file. | |
Args: | |
pdf_path : Path to pdf's | |
Returns: | |
Analysis result or error message | |
""" | |
path = Path(pdf_path).expanduser().resolve() | |
if not path.exists(): | |
return f"Error: PDF file not found at {path}" | |
try: | |
reader = PyPDF2.PdfReader(str(path)) | |
text = "\n".join(page.extract_text() or "" for page in reader.pages) | |
return text | |
except Exception as e: | |
return f"Error reading PDF file: {e}" | |
def analyze_image_tool(image_path: str) -> str: | |
""" | |
Analyze an image: return dimensions and OCR-extracted text. | |
Args: | |
image_path : Image path | |
Returns: | |
Analysis result or error message | |
""" | |
path = Path(image_path).expanduser().resolve() | |
if not path.exists(): | |
return f"Error: Image not found at {path}" | |
try: | |
img = Image.open(path) | |
w, h = img.size | |
ocr_text = pytesseract.image_to_string(img) | |
return f"Dimensions: {w}Γ{h}\n\nOCR Text:\n{ocr_text}" | |
except Exception as e: | |
return f"Error analyzing image: {e}" | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
self.agent = CodeAgent( | |
model=OpenAIServerModel(model_id="gpt-4o"), | |
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool(), ExcelToTextTool(), pdf_to_text_tool, analyze_image_tool,PythonInterpreterTool()], | |
add_base_tools=True, | |
additional_authorized_imports=['pandas', 'numpy', 'csv', 'subprocess'] | |
) | |
# Response cache to avoid duplicate API calls | |
self.response_cache = {} | |
logger.info("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
logger.info(f"Agent received question (first 50 chars): {question[:50]}...") | |
# Check cache first | |
if question in self.response_cache: | |
logger.info("Using cached response") | |
return self.response_cache[question] | |
try: | |
# Use the retry wrapper to handle rate limits | |
fixed_answer = call_llm_with_retry(self.agent, question) | |
logger.info(f"Agent returning answer (first 50 chars): {fixed_answer[:50] if fixed_answer else 'None'}...") | |
# Cache the response | |
self.response_cache[question] = fixed_answer | |
return fixed_answer | |
except Exception as e: | |
error_msg = f"Failed after multiple retries: {e}" | |
logger.error(error_msg) | |
return f"The model experienced an issue that couldn't be resolved with retries: {str(e)}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = "l3xv/Final_Assignment_Template" | |
if profile: | |
username = f"{profile.username}" | |
logger.info(f"User logged in: {username}") | |
else: | |
logger.warning("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
logger.error(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
logger.info(f"Agent code URL: {agent_code}") | |
# 2. Fetch Questions | |
logger.info(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
logger.warning("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
logger.info(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
logger.error(f"Error decoding JSON response from questions endpoint: {e}") | |
logger.error(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
logger.error(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent with rate limit handling and batching | |
results_log = [] | |
answers_payload = [] | |
logger.info(f"Running agent on {len(questions_data)} questions...") | |
# Process questions with a small delay between them to avoid rate limits | |
batch_size = 1 # Process one at a time for rate limiting | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
logger.warning(f"Skipping item with missing task_id or question: {item}") | |
continue | |
# ----------fetch any attached file ---------- | |
try: | |
file_path = download_file_if_any(api_url, task_id) | |
except Exception as e: | |
file_path = None | |
logger.error(f"[file fetch error] {task_id}: {e}") | |
# ---------- Build the prompt sent to the agent ---------- | |
if file_path: | |
q_for_agent = ( | |
f"{question_text}\n\n" | |
f"---\n" | |
f"A file was downloaded for this task and saved locally at:\n" | |
f"{file_path}\n" | |
f"---\n\n" | |
) | |
else: | |
q_for_agent = question_text | |
try: | |
logger.info(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
submitted_answer = agent(q_for_agent) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
# Add a delay between questions to manage rate limits | |
if i < len(questions_data) - 1: # Don't delay after the last question | |
delay = random.uniform(5, 10) # Random delay between 5-10 seconds | |
logger.info(f"Processed question {i+1}/{len(questions_data)}. Waiting {delay:.2f}s before next question...") | |
time.sleep(delay) | |
except Exception as e: | |
logger.error(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
logger.warning("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
logger.info(status_update) | |
# 5. Submit | |
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
logger.info("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
logger.error(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
banner = "\n" + "-"*30 + " App Starting " + "-"*30 | |
logger.info(banner) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = "l3xv/Final_Assignment_Template" | |
if space_host_startup: | |
logger.info(f"β SPACE_HOST found: {space_host_startup}") | |
logger.info(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
logger.info("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
logger.info(f"β SPACE_ID found: {space_id_startup}") | |
logger.info(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
logger.info(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
logger.info("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
logger.info("-"*(60 + len(" App Starting ")) + "\n") | |
logger.info("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |