File size: 5,787 Bytes
10e9b7d
 
eccf8e4
3c4371f
fb79f9d
10e9b7d
fd09c06
936e8f7
 
e80aab9
3db6293
fd09c06
fb79f9d
e80aab9
fb79f9d
 
31243f4
fb79f9d
 
31243f4
fb79f9d
 
 
936e8f7
fb79f9d
 
e80aab9
31243f4
fb79f9d
7d65c66
31243f4
fb79f9d
 
 
 
 
 
 
 
7d65c66
fb79f9d
 
31243f4
 
fd09c06
 
fb79f9d
 
 
 
 
31243f4
fd09c06
31243f4
fb79f9d
 
 
 
31243f4
fb79f9d
 
 
31243f4
fb79f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
fb79f9d
 
 
e80aab9
 
fb79f9d
e80aab9
 
fb79f9d
e80aab9
 
3c4371f
 
 
e80aab9
 
fb79f9d
 
 
e80aab9
fd09c06
e80aab9
fb79f9d
0ee0419
e514fd7
fb79f9d
 
 
 
 
 
 
 
e514fd7
e80aab9
fb79f9d
7e4a06b
e80aab9
fb79f9d
 
 
e80aab9
9088b99
fb79f9d
e80aab9
31243f4
fb79f9d
 
31243f4
e80aab9
fb79f9d
 
 
 
 
 
e80aab9
 
3c4371f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import gradio as gr
import requests
import pandas as pd
import json

# Import your upgraded agent
from agent import GeminiAgent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MY_HF_USERNAME = "benjipeng"
ANSWERS_FILE = "answers.json"

# --- Logic for Running the Agent ---
def run_agent_only(profile: gr.OAuthProfile | None):
    """
    Fetches questions, runs the agent on them, and saves the answers to a file.
    This is the long-running part of the process.
    """
    if not profile or profile.username != MY_HF_USERNAME:
        yield "Error: Please log in as the correct user (`benjipeng`) to run the agent.", pd.DataFrame()
        return

    print("Starting agent run...")
    yield "Fetching questions...", pd.DataFrame()

    try:
        response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=20)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        yield f"Error fetching questions: {e}", pd.DataFrame()
        return
    
    yield f"Fetched {len(questions_data)} questions. Initializing agent...", pd.DataFrame()
    agent = GeminiAgent()
    
    all_answers = []
    results_log = []

    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        has_file = item.get("file", None) is not None
        
        status_message = f"Processing question {i+1}/{len(questions_data)} (Task ID: {task_id})..."
        yield status_message, pd.DataFrame(results_log)
        
        modified_question = f"{question_text}\n\n[Agent Note: A file is attached.]" if has_file else question_text
        
        try:
            submitted_answer = agent(modified_question, task_id)
        except Exception as e:
            submitted_answer = f"AGENT ERROR: {e}"
        
        all_answers.append({"task_id": task_id, "submitted_answer": submitted_answer})
        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})

        # Save progress incrementally
        with open(ANSWERS_FILE, 'w') as f:
            json.dump(all_answers, f, indent=2)

    yield f"Agent run complete. All {len(all_answers)} answers saved to {ANSWERS_FILE}. Ready to submit.", pd.DataFrame(results_log)


# --- Logic for Submitting Answers ---
def submit_saved_answers(profile: gr.OAuthProfile | None):
    """
    Reads the answers from the saved file and submits them to the scoring server.
    This is the fast part of the process.
    """
    if not profile or profile.username != MY_HF_USERNAME:
        return "Error: Please log in as the correct user (`benjipeng`) to submit."

    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    username = profile.username

    try:
        with open(ANSWERS_FILE, 'r') as f:
            answers_payload = json.load(f)
    except FileNotFoundError:
        return f"Error: Answers file '{ANSWERS_FILE}' not found. Please run the agent first."
    except json.JSONDecodeError:
        return f"Error: Could not read the answers file. It might be corrupted."

    if not answers_payload:
        return "Error: Answers file is empty."
        
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    
    submit_url = f"{DEFAULT_API_URL}/submit"
    print(f"Submitting {len(answers_payload)} answers for user '{username}'...")

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        return (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
    except requests.exceptions.HTTPError as e:
        return f"Submission Failed: Server responded with status {e.response.status_code}. Detail: {e.response.text}"
    except Exception as e:
        return f"An unexpected error occurred during submission: {e}"

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Gemini ReAct Agent for GAIA (Two-Step Submission)")
    gr.Markdown(
        """
        **Step 1: Run Agent & Save Answers**
        - This is the long process that can take 10-20 minutes.
        - The agent will answer all 20 questions and save the results to a file.
        - You will see the progress in the status box and the table below.
        
        **Step 2: Submit Saved Answers**
        - Once Step 1 is complete, click this button.
        - This will be very fast and will send your saved answers to be scored.
        """
    )
    
    gr.LoginButton()

    with gr.Row():
        run_button = gr.Button("Step 1: Run Agent & Save Answers")
        submit_button = gr.Button("Step 2: Submit Saved Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False)

    run_button.click(
        fn=run_agent_only,
        inputs=None, # LoginButton profile is passed implicitly
        outputs=[status_output, results_table]
    )
    
    submit_button.click(
        fn=submit_saved_answers,
        inputs=None, # LoginButton profile is passed implicitly
        outputs=[status_output]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    demo.launch(debug=True, share=False)