benjipeng's picture
Update app.py
fb79f9d verified
import os
import gradio as gr
import requests
import pandas as pd
import json
# Import your upgraded agent
from agent import GeminiAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MY_HF_USERNAME = "benjipeng"
ANSWERS_FILE = "answers.json"
# --- Logic for Running the Agent ---
def run_agent_only(profile: gr.OAuthProfile | None):
"""
Fetches questions, runs the agent on them, and saves the answers to a file.
This is the long-running part of the process.
"""
if not profile or profile.username != MY_HF_USERNAME:
yield "Error: Please log in as the correct user (`benjipeng`) to run the agent.", pd.DataFrame()
return
print("Starting agent run...")
yield "Fetching questions...", pd.DataFrame()
try:
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
yield f"Error fetching questions: {e}", pd.DataFrame()
return
yield f"Fetched {len(questions_data)} questions. Initializing agent...", pd.DataFrame()
agent = GeminiAgent()
all_answers = []
results_log = []
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
has_file = item.get("file", None) is not None
status_message = f"Processing question {i+1}/{len(questions_data)} (Task ID: {task_id})..."
yield status_message, pd.DataFrame(results_log)
modified_question = f"{question_text}\n\n[Agent Note: A file is attached.]" if has_file else question_text
try:
submitted_answer = agent(modified_question, task_id)
except Exception as e:
submitted_answer = f"AGENT ERROR: {e}"
all_answers.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Save progress incrementally
with open(ANSWERS_FILE, 'w') as f:
json.dump(all_answers, f, indent=2)
yield f"Agent run complete. All {len(all_answers)} answers saved to {ANSWERS_FILE}. Ready to submit.", pd.DataFrame(results_log)
# --- Logic for Submitting Answers ---
def submit_saved_answers(profile: gr.OAuthProfile | None):
"""
Reads the answers from the saved file and submits them to the scoring server.
This is the fast part of the process.
"""
if not profile or profile.username != MY_HF_USERNAME:
return "Error: Please log in as the correct user (`benjipeng`) to submit."
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
username = profile.username
try:
with open(ANSWERS_FILE, 'r') as f:
answers_payload = json.load(f)
except FileNotFoundError:
return f"Error: Answers file '{ANSWERS_FILE}' not found. Please run the agent first."
except json.JSONDecodeError:
return f"Error: Could not read the answers file. It might be corrupted."
if not answers_payload:
return "Error: Answers file is empty."
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
submit_url = f"{DEFAULT_API_URL}/submit"
print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
return (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
except requests.exceptions.HTTPError as e:
return f"Submission Failed: Server responded with status {e.response.status_code}. Detail: {e.response.text}"
except Exception as e:
return f"An unexpected error occurred during submission: {e}"
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Gemini ReAct Agent for GAIA (Two-Step Submission)")
gr.Markdown(
"""
**Step 1: Run Agent & Save Answers**
- This is the long process that can take 10-20 minutes.
- The agent will answer all 20 questions and save the results to a file.
- You will see the progress in the status box and the table below.
**Step 2: Submit Saved Answers**
- Once Step 1 is complete, click this button.
- This will be very fast and will send your saved answers to be scored.
"""
)
gr.LoginButton()
with gr.Row():
run_button = gr.Button("Step 1: Run Agent & Save Answers")
submit_button = gr.Button("Step 2: Submit Saved Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False)
run_button.click(
fn=run_agent_only,
inputs=None, # LoginButton profile is passed implicitly
outputs=[status_output, results_table]
)
submit_button.click(
fn=submit_saved_answers,
inputs=None, # LoginButton profile is passed implicitly
outputs=[status_output]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch(debug=True, share=False)