Spaces:
bla
/
Runtime error

EdgeTAM / app.py
bla's picture
Update app.py
6e871ac verified
raw
history blame
8.2 kB
# The full rewritten version of the provided code with progress bar, error fixes, and proper Gradio integration
import os
import copy
import tempfile
from datetime import datetime
import gc
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
import gradio as gr
from moviepy.editor import ImageSequenceClip
from sam2.build_sam import build_sam2_video_predictor
# Remove CUDA-related env var to force CPU-only mode
os.environ.pop("TORCH_CUDNN_SDPA_ENABLED", None)
# Config
sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
examples = [[f"examples/{vid}"] for vid in ["01_dog.mp4", "02_cups.mp4", "03_blocks.mp4", "04_coffee.mp4", "05_default_juggle.mp4"]]
OBJ_ID = 0
# Model loader
if os.path.exists(sam2_checkpoint) and os.path.exists(model_cfg):
try:
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
except Exception as e:
print("Error loading predictor:", e)
predictor = None
else:
print("Model files missing.")
predictor = None
def get_fps(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return 30.0
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def reset(session):
if session["inference_state"]:
predictor.reset_state(session["inference_state"])
session.update({"input_points": [], "input_labels": [], "first_frame": None, "all_frames": None, "inference_state": None})
return None, gr.update(open=True), None, None, gr.update(value=None, visible=False), session
def clear_points(session):
session["input_points"] = []
session["input_labels"] = []
if session["inference_state"] and session["inference_state"].get("tracking_has_started"):
predictor.reset_state(session["inference_state"])
return session["first_frame"], None, gr.update(value=None, visible=False), session
def preprocess_video(video_path, session):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return gr.update(open=True), None, None, gr.update(value=None, visible=False), session
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
stride = max(1, total_frames // 300)
frames, first_frame = [], None
w, h = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
target_w = 640
scale = target_w / w if w > target_w else 1.0
frame_id = 0
while True:
ret, frame = cap.read()
if not ret: break
if frame_id % stride == 0:
if scale < 1.0:
frame = cv2.resize(frame, (int(w*scale), int(h*scale)))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if first_frame is None: first_frame = frame
frames.append(frame)
frame_id += 1
cap.release()
session.update({"first_frame": first_frame, "all_frames": frames, "frame_stride": stride, "scale_factor": scale, "inference_state": predictor.init_state(video_path=video_path), "input_points": [], "input_labels": []})
return gr.update(open=False), first_frame, None, gr.update(value=None, visible=False), session
def show_mask(mask, obj_id=None):
cmap = plt.get_cmap("tab10")
color = np.array([*cmap(0 if obj_id is None else obj_id)[:3], 0.6])
h, w = mask.shape
mask_rgba = (mask.reshape(h, w, 1) * color.reshape(1, 1, -1) * 255).astype(np.uint8)
proper_mask = np.zeros((h, w, 4), dtype=np.uint8)
proper_mask[:, :, :min(mask_rgba.shape[2], 4)] = mask_rgba[:, :, :min(mask_rgba.shape[2], 4)]
return Image.fromarray(proper_mask, "RGBA")
def segment_with_points(ptype, session, evt):
session["input_points"].append(evt.index)
session["input_labels"].append(1 if ptype == "include" else 0)
first = session["first_frame"]
h, w = first.shape[:2]
layer = np.zeros((h, w, 4), dtype=np.uint8)
for idx, pt in enumerate(session["input_points"]):
color = (0, 255, 0, 255) if session["input_labels"][idx] == 1 else (255, 0, 0, 255)
cv2.circle(layer, pt, int(min(w, h)*0.01), color, -1)
overlay = Image.alpha_composite(Image.fromarray(first).convert("RGBA"), Image.fromarray(layer, "RGBA"))
try:
_, _, logits = predictor.add_new_points(session["inference_state"], 0, OBJ_ID, np.array(session["input_points"]), np.array(session["input_labels"]))
mask = (logits[0] > 0.0).cpu().numpy()
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
mask_img = show_mask(mask)
return overlay, Image.alpha_composite(Image.fromarray(first).convert("RGBA"), mask_img), session
except Exception as e:
print("Segmentation error:", e)
return overlay, overlay, session
def propagate(video_in, session, progress=gr.Progress()):
if not session["input_points"] or not session["inference_state"]: return None, session
masks = {}
for i, (idxs, obj_ids, logits) in enumerate(predictor.propagate_in_video(session["inference_state"])):
try:
masks[idxs] = {oid: (logits[j] > 0.0).cpu().numpy() for j, oid in enumerate(obj_ids)}
progress(i / 300, desc=f"Tracking frame {idxs}")
except: continue
frames_out, stride = [], max(1, len(masks) // 50)
for i in range(0, len(masks), stride):
if i not in masks or OBJ_ID not in masks[i]: continue
try:
frame = session["all_frames"][i]
mask = masks[i][OBJ_ID]
h, w = frame.shape[:2]
mask = cv2.resize(mask.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST).astype(bool)
output = Image.alpha_composite(Image.fromarray(frame).convert("RGBA"), show_mask(mask))
frames_out.append(np.array(output))
except: continue
out_path = os.path.join(tempfile.gettempdir(), f"output_video_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4")
fps = min(15, get_fps(video_in))
ImageSequenceClip(frames_out, fps=fps).write_videofile(out_path, codec="libx264", bitrate="800k", threads=2, logger=None)
gc.collect()
return gr.update(value=out_path, visible=True), session
with gr.Blocks() as demo:
state = gr.State({"first_frame": None, "all_frames": None, "input_points": [], "input_labels": [], "inference_state": None, "frame_stride": 1, "scale_factor": 1.0, "original_dimensions": None})
gr.Markdown("<center><strong><font size='8'>EdgeTAM CPU</font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a></center>")
with gr.Row():
with gr.Column():
gr.Markdown("""<ol><li>Upload a video or use an example</li><li>Select 'include' or 'exclude' and click points</li><li>Click 'Track' to segment and track</li></ol>""")
drawer = gr.Accordion("Input Video", open=True)
with drawer:
video_in = gr.Video(label="Input Video", format="mp4")
ptype = gr.Radio(label="Point Type", choices=["include", "exclude"], value="include")
track_btn = gr.Button("Track", variant="primary")
clear_btn = gr.Button("Clear Points")
reset_btn = gr.Button("Reset")
points_map = gr.Image(label="Frame with Points", type="numpy", interactive=False)
with gr.Column():
gr.Markdown("# Try some examples ⬇️")
gr.Examples(examples, inputs=[video_in], examples_per_page=5)
output_img = gr.Image(label="Reference Mask")
output_vid = gr.Video(visible=False)
video_in.upload(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
video_in.change(preprocess_video, [video_in, state], [drawer, points_map, output_img, output_vid, state])
points_map.select(segment_with_points, [ptype, state], [points_map, output_img, state])
clear_btn.click(clear_points, state, [points_map, output_img, output_vid, state])
reset_btn.click(reset, state, [video_in, drawer, points_map, output_img, output_vid, state])
track_btn.click(fn=propagate, inputs=[video_in, state], outputs=[output_vid, state])
if __name__ == '__main__':
demo.queue()
demo.launch()