File size: 11,410 Bytes
cf10c85
 
 
 
 
 
7e1ea76
cf10c85
 
 
 
 
 
 
7e1ea76
cf10c85
 
 
7e1ea76
30e01c8
cf10c85
7e1ea76
cf10c85
3bdc160
cf10c85
 
7e1ea76
cf10c85
 
 
7e1ea76
 
 
 
 
 
 
 
 
cf10c85
 
7e1ea76
cf10c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1ea76
cf10c85
 
 
7e1ea76
 
cf10c85
 
 
7e1ea76
 
 
 
cf10c85
 
 
 
7e1ea76
 
 
 
cf10c85
 
 
 
 
 
 
7e1ea76
 
cf10c85
 
7e1ea76
 
cf10c85
 
 
7e1ea76
 
 
 
 
 
 
 
 
 
 
 
 
cf10c85
 
 
 
 
 
7e1ea76
cf10c85
 
7e1ea76
cf10c85
 
 
 
 
7e1ea76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf10c85
7e1ea76
 
 
cf10c85
7e1ea76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf10c85
7e1ea76
 
 
 
 
 
 
cf10c85
 
 
 
7e1ea76
 
 
cf10c85
7e1ea76
 
 
cf10c85
 
 
 
7e1ea76
 
 
 
 
 
 
 
 
 
 
 
 
cf10c85
 
 
 
7e1ea76
cf10c85
7e1ea76
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import feedparser
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
import logging
from huggingface_hub import HfApi, login
import shutil
import json
from datetime import datetime
import dateutil.parser
import hashlib
import re

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_ARTICLES_PER_FEED = 1000
LOCAL_DB_DIR = "chroma_db"
FEEDS_FILE = "rss_feeds.json"
COLLECTION_NAME = "news_articles"
HF_API_TOKEN = os.getenv("HF_TOKEN")
REPO_ID = "broadfield-dev/news-rag-db"

# Initialize Hugging Face API
login(token=HF_API_TOKEN)
hf_api = HfApi()

# Initialize embedding model (global, reusable)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Initialize vector DB with a specific collection name
vector_db = Chroma(
    persist_directory=LOCAL_DB_DIR,
    embedding_function=embedding_model,
    collection_name=COLLECTION_NAME
)

def clean_text(text):
    """Clean text by removing HTML tags and extra whitespace."""
    if not text or not isinstance(text, str):
        return ""
    text = re.sub(r'<.*?>', '', text)
    text = ' '.join(text.split())
    return text.strip().lower()

def fetch_rss_feeds():
    articles = []
    seen_keys = set()
    
    try:
        with open(FEEDS_FILE, 'r') as f:
            feed_categories = json.load(f)
    except FileNotFoundError:
        logger.error(f"{FEEDS_FILE} not found. No feeds to process.")
        return []

    for category, feeds in feed_categories.items():
        for feed_info in feeds:
            feed_url = feed_info.get("url")
            if not feed_url:
                logger.warning(f"Skipping feed with no URL in category '{category}'")
                continue

            try:
                logger.info(f"Fetching {feed_url}")
                feed = feedparser.parse(feed_url)
                if feed.bozo:
                    logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}")
                    continue
                article_count = 0
                for entry in feed.entries:
                    if article_count >= MAX_ARTICLES_PER_FEED:
                        break
                    title = entry.get("title", "No Title")
                    link = entry.get("link", "")
                    description = entry.get("summary", entry.get("description", ""))
                    
                    title = clean_text(title)
                    link = clean_text(link)
                    description = clean_text(description)

                    published = "Unknown Date"
                    for date_field in ["published", "updated", "created", "pubDate"]:
                        if date_field in entry:
                            try:
                                parsed_date = dateutil.parser.parse(entry[date_field])
                                published = parsed_date.strftime("%Y-%m-%d %H:%M:%S")
                                break
                            except (ValueError, TypeError) as e:
                                logger.debug(f"Failed to parse {date_field} '{entry[date_field]}': {e}")
                                continue

                    description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
                    key = f"{title}|{link}|{published}|{description_hash}"
                    if key not in seen_keys:
                        seen_keys.add(key)
                        image = "svg"
                        for img_source in [
                            lambda e: clean_text(e.get("media_content", [{}])[0].get("url")) if e.get("media_content") else "",
                            lambda e: clean_text(e.get("media_thumbnail", [{}])[0].get("url")) if e.get("media_thumbnail") else "",
                            lambda e: clean_text(e.get("enclosure", {}).get("url")) if e.get("enclosure") else "",
                            lambda e: clean_text(next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), "")),
                        ]:
                            try:
                                img = img_source(entry)
                                if img and img.strip():
                                    image = img
                                    break
                            except (IndexError, AttributeError, TypeError):
                                continue

                        articles.append({
                            "title": title,
                            "link": link,
                            "description": description,
                            "published": published,
                            "category": category,  # Use JSON category directly
                            "image": image,
                        })
                        article_count += 1
            except Exception as e:
                logger.error(f"Error fetching {feed_url}: {e}")
    logger.info(f"Total articles fetched: {len(articles)}")
    return articles

def categorize_feed(url):
    """Categorize an RSS feed based on its URL."""
    if not url or not isinstance(url, str):
        logger.warning(f"Invalid URL provided for categorization: {url}")
        return "Uncategorized"

    url = url.lower().strip()  # Normalize the URL

    logger.debug(f"Categorizing URL: {url}")  # Add debugging for visibility

    if any(keyword in url for keyword in ["nature", "science.org", "arxiv.org", "plos.org", "annualreviews.org", "journals.uchicago.edu", "jneurosci.org", "cell.com", "nejm.org", "lancet.com"]):
        return "Academic Papers"
    elif any(keyword in url for keyword in ["reuters.com/business", "bloomberg.com", "ft.com", "marketwatch.com", "cnbc.com", "foxbusiness.com", "wsj.com", "bworldonline.com", "economist.com", "forbes.com"]):
        return "Business"
    elif any(keyword in url for keyword in ["investing.com", "cnbc.com/market", "marketwatch.com/market", "fool.co.uk", "zacks.com", "seekingalpha.com", "barrons.com", "yahoofinance.com"]):
        return "Stocks & Markets"
    elif any(keyword in url for keyword in ["whitehouse.gov", "state.gov", "commerce.gov", "transportation.gov", "ed.gov", "dol.gov", "justice.gov", "federalreserve.gov", "occ.gov", "sec.gov", "bls.gov", "usda.gov", "gao.gov", "cbo.gov", "fema.gov", "defense.gov", "hhs.gov", "energy.gov", "interior.gov"]):
        return "Federal Government"
    elif any(keyword in url for keyword in ["weather.gov", "metoffice.gov.uk", "accuweather.com", "weatherunderground.com", "noaa.gov", "wunderground.com", "climate.gov", "ecmwf.int", "bom.gov.au"]):
        return "Weather"
    elif any(keyword in url for keyword in ["data.worldbank.org", "imf.org", "un.org", "oecd.org", "statista.com", "kff.org", "who.int", "cdc.gov", "bea.gov", "census.gov", "fdic.gov"]):
        return "Data & Statistics"
    elif any(keyword in url for keyword in ["nasa", "spaceweatherlive", "space", "universetoday", "skyandtelescope", "esa"]):
        return "Space"
    elif any(keyword in url for keyword in ["sciencedaily", "quantamagazine", "smithsonianmag", "popsci", "discovermagazine", "scientificamerican", "newscientist", "livescience", "atlasobscura"]):
        return "Science"
    elif any(keyword in url for keyword in ["wired", "techcrunch", "arstechnica", "gizmodo", "theverge"]):
        return "Tech"
    elif any(keyword in url for keyword in ["horoscope", "astrostyle"]):
        return "Astrology"
    elif any(keyword in url for keyword in ["cnn_allpolitics", "bbci.co.uk/news/politics", "reuters.com/arc/outboundfeeds/newsletter-politics", "politico.com/rss/politics", "thehill"]):
        return "Politics"
    elif any(keyword in url for keyword in ["weather", "swpc.noaa.gov", "foxweather"]):
        return "Earth Weather"
    elif "vogue" in url:
        return "Lifestyle"
    elif any(keyword in url for keyword in ["phys.org", "aps.org", "physicsworld"]):
        return "Physics"
    else:
        logger.warning(f"No matching category found for URL: {url}")
        return "Uncategorized"

def process_and_store_articles(articles):
    documents = []
    existing_ids = set(vector_db.get()["ids"])  # Load existing IDs once
    for article in articles:
        try:
            title = clean_text(article["title"])
            link = clean_text(article["link"])
            description = clean_text(article["description"])
            published = article["published"]
            description_hash = hashlib.sha256(description.encode('utf-8')).hexdigest()
            doc_id = f"{title}|{link}|{published}|{description_hash}"
            if doc_id in existing_ids:
                logger.debug(f"Skipping duplicate in DB: {doc_id}")
                continue
            metadata = {
                "title": article["title"],
                "link": article["link"],
                "original_description": article["description"],
                "published": article["published"],
                "category": article["category"],
                "image": article["image"],
            }
            doc = Document(page_content=description, metadata=metadata, id=doc_id)
            documents.append(doc)
            existing_ids.add(doc_id)  # Update in-memory set to avoid duplicates within this batch
        except Exception as e:
            logger.error(f"Error processing article {article['title']}: {e}")
    
    if documents:
        try:
            vector_db.add_documents(documents)
            vector_db.persist()
            logger.info(f"Added {len(documents)} new articles to DB. Total documents: {len(vector_db.get()['ids'])}")
        except Exception as e:
            logger.error(f"Error storing articles: {e}")

def download_from_hf_hub():
    if not os.path.exists(LOCAL_DB_DIR):
        try:
            hf_api.create_repo(repo_id=REPO_ID, repo_type="dataset", exist_ok=True, token=HF_API_TOKEN)
            logger.info(f"Downloading Chroma DB from {REPO_ID}...")
            hf_api.hf_hub_download(repo_id=REPO_ID, filename="chroma_db", local_dir=LOCAL_DB_DIR, repo_type="dataset", token=HF_API_TOKEN)
        except Exception as e:
            logger.error(f"Error downloading from Hugging Face Hub: {e}")
    else:
        logger.info("Local Chroma DB exists, loading existing data.")

def upload_to_hf_hub():
    if os.path.exists(LOCAL_DB_DIR):
        try:
            logger.info(f"Uploading updated Chroma DB to {REPO_ID}...")
            for root, _, files in os.walk(LOCAL_DB_DIR):
                for file in files:
                    local_path = os.path.join(root, file)
                    remote_path = os.path.relpath(local_path, LOCAL_DB_DIR)
                    hf_api.upload_file(
                        path_or_fileobj=local_path,
                        path_in_repo=remote_path,
                        repo_id=REPO_ID,
                        repo_type="dataset",
                        token=HF_API_TOKEN
                    )
            logger.info(f"Database uploaded to: {REPO_ID}")
        except Exception as e:
            logger.error(f"Error uploading to Hugging Face Hub: {e}")

if __name__ == "__main__":
    download_from_hf_hub()  # Ensure DB is initialized
    articles = fetch_rss_feeds()
    process_and_store_articles(articles)
    upload_to_hf_hub()