node_search / memory_logic.py
broadfield-dev's picture
Update memory_logic.py
c9ee5e6 verified
raw
history blame
12.9 kB
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name):
logging.getLogger(lib_name).setLevel(logging.WARNING)
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "RAM").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
_embedder = None
_dimension = 384
_long_term_memory_items_list = []
_faiss_long_term_memory_index = None
_short_term_memory_items_list = []
_faiss_short_term_memory_index = None
_rules_items_list = []
_faiss_rules_index = None
_initialized = False
_init_lock = threading.Lock()
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _build_faiss_index_from_json_strings(memory_items: list[str]) -> faiss.Index | None:
if not memory_items or not _embedder:
return faiss.IndexFlatL2(_dimension)
texts_to_embed = []
valid_indices = []
for i, mem_json_str in enumerate(memory_items):
try:
mem_obj = json.loads(mem_json_str)
text = f"User: {mem_obj.get('user_input', '')}\nAI: {mem_obj.get('bot_response', '')}\nTakeaway: {mem_obj.get('metrics', {}).get('takeaway', 'N/A')}"
texts_to_embed.append(text)
valid_indices.append(i)
except json.JSONDecodeError:
continue
if not texts_to_embed:
return faiss.IndexFlatL2(_dimension)
try:
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[1] == _dimension:
index = faiss.IndexFlatL2(_dimension)
index.add(embeddings_np)
return index
else:
logger.error(f"Error building FAISS index: embedding shape mismatch.")
return faiss.IndexFlatL2(_dimension)
except Exception as e:
logger.error(f"Failed to build FAISS index: {e}", exc_info=True)
return faiss.IndexFlatL2(_dimension)
def initialize_memory_system():
global _initialized, _embedder, _dimension
global _long_term_memory_items_list, _faiss_long_term_memory_index
global _short_term_memory_items_list, _faiss_short_term_memory_index
global _rules_items_list, _faiss_rules_index
with _init_lock:
if _initialized:
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not all([SentenceTransformer, faiss, np]):
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
return
if not _embedder:
try:
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
return
long_term_mems = []
if STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
long_term_mems = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading long-term memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
try:
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
long_term_mems = [m for m in dataset["train"]["memory_json"] if isinstance(m, str)]
except Exception as e: logger.error(f"Error loading long-term memories from HF Dataset: {e}")
_long_term_memory_items_list = long_term_mems
logger.info(f"Loaded {len(_long_term_memory_items_list)} long-term memory items.")
_faiss_long_term_memory_index = _build_faiss_index_from_json_strings(_long_term_memory_items_list)
logger.info(f"Long-term memory FAISS index built. Total items: {_faiss_long_term_memory_index.ntotal if _faiss_long_term_memory_index else 'N/A'}")
_short_term_memory_items_list = []
_faiss_short_term_memory_index = faiss.IndexFlatL2(_dimension)
logger.info("Short-term memory initialized (empty).")
temp_rules_text = []
if STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn: temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules")]
except Exception: pass
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
try:
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
except Exception: pass
_rules_items_list = sorted(list(set(temp_rules_text)))
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
rule_embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
_faiss_rules_index.add(np.array(rule_embeddings, dtype=np.float32))
logger.info(f"Rules FAISS index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
if not _initialized: initialize_memory_system()
if not _embedder: return False, "Embedder not initialized."
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
_faiss_short_term_memory_index.add(embedding_np)
_short_term_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
all_mems_for_push = _long_term_memory_items_list + _short_term_memory_items_list
Dataset.from_dict({"memory_json": list(set(all_mems_for_push))}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added memory. Short-term count: {_faiss_short_term_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error adding memory: {e}"
def search_memories(query: str, k: int = 3, threshold: float = 1.0) -> tuple[list[dict], str]:
if not _initialized: initialize_memory_system()
if not _embedder: return [], "uninitialized"
query_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
final_results = {}
search_path = "short"
if _faiss_short_term_memory_index and _faiss_short_term_memory_index.ntotal > 0:
distances, indices = _faiss_short_term_memory_index.search(query_embedding, min(k, _faiss_short_term_memory_index.ntotal))
best_dist = distances[0][0] if len(distances[0]) > 0 else float('inf')
if best_dist < threshold:
logger.info(f"Found relevant short-term memories (best distance: {best_dist:.4f}).")
for i in indices[0]:
res = json.loads(_short_term_memory_items_list[i])
final_results[res['timestamp']] = res
return list(final_results.values()), search_path
logger.info("No relevant short-term memories found. Escalating to deep search on long-term memory.")
search_path = "deep"
if _faiss_long_term_memory_index and _faiss_long_term_memory_index.ntotal > 0:
distances, indices = _faiss_long_term_memory_index.search(query_embedding, min(k, _faiss_long_term_memory_index.ntotal))
for i in indices[0]:
res = json.loads(_long_term_memory_items_list[i])
final_results[res['timestamp']] = res
return list(final_results.values()), search_path
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
if not _initialized: initialize_memory_system()
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
try:
q_embedding = np.array(_embedder.encode([query]), dtype=np.float32)
_, indices = _faiss_rules_index.search(q_embedding, min(k, _faiss_rules_index.ntotal))
return [_rules_items_list[i] for i in indices[0]]
except Exception as e:
logger.error(f"Error retrieving rules: {e}", exc_info=True)
return []
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
all_mems = _long_term_memory_items_list + _short_term_memory_items_list
seen_ts = set()
unique_mem_dicts = []
for mem_json_str in reversed(all_mems):
try:
mem_dict = json.loads(mem_json_str)
if mem_dict['timestamp'] not in seen_ts:
unique_mem_dicts.append(mem_dict)
seen_ts.add(mem_dict['timestamp'])
except: continue
return unique_mem_dicts
# --- The rest of the utility functions (add_rule, get_rules, clear functions) remain the same ---
def add_rule_entry(rule_text: str):
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder: return False, "Embedder not initialized."
rule_text = rule_text.strip()
if not rule_text or rule_text in _rules_items_list: return False, "duplicate or empty"
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
_faiss_rules_index.add(np.array(embedding, dtype=np.float32))
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True, "Rule added"
except Exception as e:
logger.error(f"Error adding rule: {e}", exc_info=True)
return False, str(e)
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)