Spaces:
Build error
Build error
File size: 11,907 Bytes
0ca8cef a337c3f 0ca8cef 351252d 0ca8cef 351252d 3d3ff49 d4b107b 9e722fb 8c6ad91 351252d 7ef26c1 d808ccb 0201e30 1137662 8c6ad91 d353554 8c6ad91 d353554 8c6ad91 440d6b7 47661bd 351252d 0ca8cef a337c3f 351252d a337c3f d808ccb 0ca8cef ca866cd a337c3f 351252d a337c3f be5abfd a337c3f 351252d 4012d3e 440d6b7 b3d3679 b98f4ad d2774a4 05fd026 4012d3e 351252d 05fd026 8158ef0 7ef26c1 8d12d9b 7ef26c1 4012d3e b992645 4012d3e 05fd026 6e9c279 a086817 5074632 8158ef0 cb06cac 237e29e e8e4ced 6e9c279 237e29e 6e9c279 cb06cac 4012d3e 5074632 23b8d9f 4012d3e 05fd026 4012d3e f72e09a 05fd026 351252d 52a656c b992645 9983004 0ac786e f4108af cb06cac 7ef26c1 9e722fb 8c6ad91 9e722fb 7ef26c1 b992645 9e722fb b992645 7ef26c1 b992645 8c6ad91 badcd8d 7ef26c1 55eafca 9e722fb 8c6ad91 9e722fb 8c6ad91 d2774a4 7ef26c1 9e722fb 7ef26c1 9e722fb b992645 9e722fb 8c6ad91 b992645 9e722fb d262ec1 9e722fb 8c6ad91 d4b107b 7ef26c1 f7e87b9 b992645 9e722fb 8c6ad91 b992645 9e722fb f7e87b9 7ef26c1 8c6ad91 d4b107b f7e87b9 9e722fb 8c6ad91 f7e87b9 7ef26c1 9e722fb b992645 9e722fb f7e87b9 b992645 9e722fb 2d9e081 8c6ad91 9e722fb b992645 7ef26c1 0ac786e 440d6b7 8c6ad91 440d6b7 d2774a4 0ac786e 8c6ad91 d2774a4 8c6ad91 d2774a4 b98f4ad d2774a4 9e722fb 440d6b7 8ec53db 237e29e d2774a4 7735671 8c6ad91 52a656c 7735671 8c6ad91 8ec53db 8c6ad91 9e722fb 7735671 8c6ad91 8ec53db 8c6ad91 9e722fb 8c6ad91 9e722fb 8c6ad91 9e722fb 8c6ad91 9e722fb 7735671 8c6ad91 7735671 8c6ad91 7735671 8c6ad91 8ec53db 9e722fb a337c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""
Version: 5th_pruned_optimized_transcription_app.py (alias HF_modded_nb-whisper_T4)
Description: webapp, transkribering (norsk), NbAiLab/nb-whisper-large, oppsummering, pdf-download.
"""
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
import warnings
from pydub import AudioSegment
import torch
import torchaudio
import torchaudio.transforms as transforms
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
from huggingface_hub import model_info
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
from fpdf import FPDF
from PIL import Image
# Suppress warnings
warnings.filterwarnings("ignore")
# Convert m4a audio to wav format
def convert_to_wav(audio_file):
audio = AudioSegment.from_file(audio_file, format="m4a")
wav_file = "temp.wav"
audio.export(wav_file, format="wav")
return wav_file
# Initialize device for torch
device = 0 if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float32
# Load tokenizer and model
processor = AutoProcessor.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLab/nb-whisper-large-verbatim")
# Model script does not support JIT compilation
#model = model.to(device)
#model = torch.jit.script(model)
# Generation kwargs
generate_kwargs = {
"num_beams": 5,
"task": "transcribe",
"language": "no",
"forced_decoder_ids": None
}
# Transcribe
def transcribe_audio(audio_file, chunk_length_s=30):
if audio_file.endswith(".m4a"):
audio_file = convert_to_wav(audio_file)
start_time = time.time()
# Load the audio waveform using torchaudio
waveform, sample_rate = torchaudio.load(audio_file)
# Convert to mono if the audio has more than one channel
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
# Resample audio to 16000 Hz if it’s not already
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
sample_rate = 16000
# Calculate the number of chunks
chunk_size = chunk_length_s * sample_rate
num_chunks = waveform.shape[1] // chunk_size + int(waveform.shape[1] % chunk_size != 0)
# Initialize an empty list to store the transcribed text from each chunk
full_text = []
for i in range(num_chunks):
start = i * chunk_size
end = min((i + 1) * chunk_size, waveform.shape[1])
chunk_waveform = waveform[:, start:end]
# Ensure the chunk waveform is properly shaped
if chunk_waveform.shape[0] > 1:
chunk_waveform = torch.mean(chunk_waveform, dim=0, keepdim=True)
# Process chunk with tokenizer
inputs = processor(chunk_waveform.squeeze(0).numpy(), sampling_rate=sample_rate, return_tensors="pt")
input_features = inputs.input_features
# Create attention mask
attention_mask = torch.ones(inputs.input_features.shape[:2], dtype=torch.long, device=device)
# -- does not output input_ids (i.e, processor)
# input_ids = inputs['input_ids']
# attention_mask[input_ids == processor.tokenizer.pad_token_id] = 0
# Set the attention mask to zero for padding tokens
attention_mask[inputs.input_features.squeeze(0) == processor.tokenizer.pad_token_id] = 0
# ASR model inference on the chunk
with torch.no_grad():
generated_ids = model.generate(
input_features=input_features.to(device),
attention_mask=attention_mask.to(device),
**generate_kwargs
)
# new processor object with desired configuration
#new_processor = processor.add_special_tokens({'eos_token': '[EOS]'})
chunk_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
full_text.append(chunk_text)
# Combine the transcribed text from all chunks
text = " ".join(full_text)
output_time = time.time() - start_time
# Audio duration (in seconds)
audio_duration = waveform.shape[1] / sample_rate
# Real-time Factor (RTF)
rtf = output_time / audio_duration
# Format of the result
result = (
f"Time taken: {output_time:.2f} seconds\n"
f"Audio duration: {audio_duration / 60:.2f} minutes ({audio_duration:.2f} seconds)\n"
f"Real-time Factor (RTF): {rtf:.2f}\n"
f"Number of words: {len(text.split())}\n\n"
"Real-time Factor (RTF) is a measure used to evaluate the speed of speech recognition systems. "
"It is the ratio of transcription time to the duration of the audio.\n\n"
"An RTF of less than 1 means the transcription process is faster than real-time (expected)."
)
return text, result
# Clean and preprocess/@summarization
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
def preprocess_text(text):
# Process the text with SpaCy
doc = nlp(text)
# SpaCy's stop top wrds direct
stop_words = spacy_stop_words
# Filter out stop words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
# Summarize w/T5 model
def summarize_text(text):
preprocessed_text = preprocess_text(text)
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Builds similarity matrix
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# "Graph-based summarization" =====>
def graph_based_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
# LexRank
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold@similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# TextRank
def text_rank_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return sentences
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# Save text+summary/PDF
def save_to_pdf(text, summary):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
if text:
pdf.multi_cell(0, 10, "Text:\n" + text)
pdf.ln(10) # Paragraph space
if summary:
pdf.multi_cell(0, 10, "Summary:\n" + summary)
pdf_output_path = "transcription.pdf"
pdf.output(pdf_output_path)
return pdf_output_path
iface = gr.Blocks()
with iface:
gr.HTML('<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/blob/main/pic09w9678yhit.png" alt="" width="100%" height="auto"/>')
gr.Markdown("**Switch Work webapp for transkribering av lydfiler til norsk skrift. Språkmodell: NbAiLab/nb-whisper-large, Ekstra: oppsummering, pdf-download**")
with gr.Tabs():
with gr.TabItem("Transcription"):
audio_input = gr.Audio(type="filepath")
text_output = gr.Textbox(label="Text")
result_output = gr.Textbox(label="Transcription Details")
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output])
with gr.TabItem("Summary | Graph-based"):
summary_output = gr.Textbox(label="Summary | Graph-based")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | LexRank"):
summary_output = gr.Textbox(label="Summary | LexRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Summary | TextRank"):
summary_output = gr.Textbox(label="Summary | TextRank")
summarize_button = gr.Button("Summarize")
summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output])
with gr.TabItem("Download PDF"):
pdf_text_only = gr.Button("Download PDF with Text Only")
pdf_summary_only = gr.Button("Download PDF with Summary Only")
pdf_both = gr.Button("Download PDF with Both")
pdf_output = gr.File(label="Download PDF")
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output])
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output])
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output])
iface.launch(share=True, debug=True)
|