Spaces:
Runtime error
Runtime error
""" | |
Adapted from https://huggingface.co/spaces/stabilityai/stable-diffusion | |
""" | |
from tensorflow import keras | |
import time | |
import gradio as gr | |
import keras_cv | |
from constants import css, examples, img_height, img_width, num_images_to_gen | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from huggingface_hub import from_pretrained_keras | |
from huggingface_hub import Repository | |
import json | |
import requests | |
# MODEL_CKPT = "chansung/textual-inversion-pipeline@v1673026791" | |
# MODEL = from_pretrained_keras(MODEL_CKPT) | |
# model = keras_cv.models.StableDiffusion( | |
# img_width=img_width, img_height=img_height, jit_compile=True | |
# ) | |
# model._text_encoder = MODEL | |
# model._text_encoder.compile(jit_compile=True) | |
# # Warm-up the model. | |
# _ = model.text_to_image("Teddy bear", batch_size=num_images_to_gen) | |
head_sha = "398e79c789669981a2ab1da1fbdafc3998c7b08a" | |
def generate_image_fn(prompt: str, unconditional_guidance_scale: int) -> list: | |
start_time = time.time() | |
# `images is an `np.ndarray`. So we convert it to a list of ndarrays. | |
# Each ndarray represents a generated image. | |
# Reference: https://gradio.app/docs/#gallery | |
images = model.text_to_image( | |
prompt, | |
batch_size=num_images_to_gen, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
) | |
end_time = time.time() | |
print(f"Time taken: {end_time - start_time} seconds.") | |
return [image for image in images] | |
demoInterface = gr.Interface( | |
generate_image_fn, | |
inputs=[ | |
gr.Textbox( | |
label="Enter your prompt", | |
max_lines=1, | |
# placeholder="cute Sundar Pichai creature", | |
), | |
gr.Slider(value=40, minimum=8, maximum=50, step=1), | |
], | |
outputs=gr.Gallery().style(grid=[2], height="auto"), | |
# examples=[["cute Sundar Pichai creature", 8], ["Hello kitty", 8]], | |
allow_flagging=False, | |
) | |
def avaliable_providers(): | |
providers = [] | |
headers = { | |
"Content-Type": "application/json", | |
} | |
endpoint_url = "https://api.endpoints.huggingface.cloud/provider" | |
response = requests.get(endpoint_url, headers=headers) | |
for provider in response.json()['items']: | |
if provider['status'] == 'available': | |
providers.append(provider['vendor']) | |
return providers | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Your own Stable Diffusion on Google Cloud Platform | |
""") | |
with gr.Row(): | |
gcp_project_id = gr.Textbox( | |
label="GCP project ID", | |
) | |
gcp_region = gr.Dropdown( | |
["us-central1", "asia‑east1", "asia-northeast1"], | |
value="us-central1", | |
interactive=True, | |
label="GCP Region" | |
) | |
gr.Markdown( | |
""" | |
Configurations on scalability | |
""") | |
with gr.Row(): | |
min_nodes = gr.Slider( | |
label="minimum number of nodes", | |
minimum=1, | |
maximum=10) | |
max_nodes = gr.Slider( | |
label="maximum number of nodes", | |
minimum=1, | |
maximum=10) | |
btn = gr.Button(value="Ready to Deploy!") | |
# btn.click(mirror, inputs=[im], outputs=[im_2]) | |
def update_regions(provider): | |
avalialbe_regions = [] | |
headers = { | |
"Content-Type": "application/json", | |
} | |
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region" | |
response = requests.get(endpoint_url, headers=headers) | |
for region in response.json()['items']: | |
if region['status'] == 'available': | |
avalialbe_regions.append(f"{region['region']}/{region['label']}") | |
return gr.Dropdown.update( | |
choices=avalialbe_regions, | |
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None | |
) | |
def update_compute_options(provider, region): | |
region = region.split("/")[0] | |
avalialbe_compute_options = [] | |
headers = { | |
"Content-Type": "application/json", | |
} | |
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute" | |
print(endpoint_url) | |
response = requests.get(endpoint_url, headers=headers) | |
for compute in response.json()['items']: | |
if compute['status'] == 'available': | |
accelerator = compute['accelerator'] | |
numAccelerators = compute['numAccelerators'] | |
memoryGb = compute['memoryGb'].replace("Gi", "GB") | |
architecture = compute['architecture'] | |
instanceType = compute['instanceType'] | |
type = f"{numAccelerators}vCPU {memoryGb} · {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}" | |
avalialbe_compute_options.append( | |
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] · {type} · {instanceType}" | |
) | |
return gr.Dropdown.update( | |
choices=avalialbe_compute_options, | |
value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None | |
) | |
def submit( | |
hf_token_input, | |
endpoint_name_input, | |
provider_selector, | |
region_selector, | |
repository_selector, | |
task_selector, | |
framework_selector, | |
compute_selector, | |
min_node_selector, | |
max_node_selector, | |
security_selector | |
): | |
compute_resources = compute_selector.split("·") | |
accelerator = compute_resources[0][:3].strip() | |
size_l_index = compute_resources[0].index("[") - 1 | |
size_r_index = compute_resources[0].index("]") | |
size = compute_resources[0][size_l_index : size_r_index].strip() | |
type = compute_resources[-1].strip() | |
payload = { | |
"accountId": repository_selector.split("/")[0], | |
"compute": { | |
"accelerator": accelerator.lower(), | |
"instanceSize": size[1:], | |
"instanceType": type, | |
"scaling": { | |
"maxReplica": int(max_node_selector), | |
"minReplica": int(min_node_selector) | |
} | |
}, | |
"model": { | |
"framework": "custom", | |
"image": { | |
"huggingface": {} | |
}, | |
"repository": repository_selector.lower(), | |
"revision": head_sha, | |
"task": task_selector.lower() | |
}, | |
"name": endpoint_name_input.strip(), | |
"provider": { | |
"region": region_selector.split("/")[0].lower(), | |
"vendor": provider_selector.lower() | |
}, | |
"type": security_selector.lower() | |
} | |
print(payload) | |
payload = json.dumps(payload) | |
print(payload) | |
headers = { | |
"Authorization": f"Bearer {hf_token_input.strip()}", | |
"Content-Type": "application/json", | |
} | |
endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint" | |
print(endpoint_url) | |
response = requests.post(endpoint_url, headers=headers, data=payload) | |
if response.status_code == 400: | |
return f"{response.text}. Malformed data in {payload}" | |
elif response.status_code == 401: | |
return "Invalid token" | |
elif response.status_code == 409: | |
return f"Endpoint {endpoint_name_input} already exists" | |
elif response.status_code == 202: | |
return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@{head_sha}. \n Please check out the progress at https://ui.endpoints.huggingface.co/endpoints." | |
else: | |
return f"something went wrong {response.status_code} = {response.text}" | |
with gr.Blocks() as demo2: | |
gr.Markdown( | |
""" | |
## Deploy Stable Diffusion on 🤗 Endpoint | |
--- | |
""") | |
gr.Markdown(""" | |
#### Your 🤗 Access Token | |
""") | |
hf_token_input = gr.Textbox( | |
show_label=False, | |
type="password" | |
) | |
gr.Markdown(""" | |
#### Decide the Endpoint name | |
""") | |
endpoint_name_input = gr.Textbox( | |
show_label=False | |
) | |
providers = avaliable_providers() | |
with gr.Row(): | |
gr.Markdown(""" | |
#### Cloud Provider | |
""") | |
gr.Markdown(""" | |
#### Cloud Region | |
""") | |
with gr.Row(): | |
provider_selector = gr.Dropdown( | |
choices=providers, | |
interactive=True, | |
show_label=False, | |
) | |
region_selector = gr.Dropdown( | |
[], | |
value="", | |
interactive=True, | |
show_label=False, | |
) | |
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector) | |
with gr.Row(): | |
gr.Markdown(""" | |
#### Target Model | |
""") | |
gr.Markdown(""" | |
#### Target Model Version(branch) | |
""") | |
with gr.Row(): | |
repository_selector = gr.Textbox( | |
value="chansung/my-kitty", | |
interactive=False, | |
show_label=False, | |
) | |
revision_selector = gr.Textbox( | |
value=f"v1673365013/{head_sha[:7]}", | |
interactive=False, | |
show_label=False, | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
#### Task | |
""") | |
gr.Markdown(""" | |
#### Framework | |
""") | |
with gr.Row(): | |
task_selector = gr.Textbox( | |
value="Custom", | |
interactive=False, | |
show_label=False, | |
) | |
framework_selector = gr.Textbox( | |
value="TensorFlow", | |
interactive=False, | |
show_label=False, | |
) | |
gr.Markdown(""" | |
#### Select Compute Instance Type | |
""") | |
compute_selector = gr.Dropdown( | |
[], | |
value="", | |
interactive=True, | |
show_label=False, | |
) | |
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector) | |
with gr.Row(): | |
gr.Markdown(""" | |
#### Min Number of Nodes | |
""") | |
gr.Markdown(""" | |
#### Max Number of Nodes | |
""") | |
gr.Markdown(""" | |
#### Security Level | |
""") | |
with gr.Row(): | |
min_node_selector = gr.Number( | |
value=1, | |
interactive=True, | |
show_label=False, | |
) | |
max_node_selector = gr.Number( | |
value=1, | |
interactive=True, | |
show_label=False, | |
) | |
security_selector = gr.Radio( | |
choices=["Protected", "Public", "Private"], | |
value="Public", | |
interactive=True, | |
show_label=False, | |
) | |
submit_button = gr.Button( | |
value="Submit", | |
) | |
status_txt = gr.Textbox( | |
value="any status update will be displayed here", | |
interactive=False | |
) | |
submit_button.click( | |
submit, | |
inputs=[ | |
hf_token_input, | |
endpoint_name_input, | |
provider_selector, | |
region_selector, | |
repository_selector, | |
task_selector, | |
framework_selector, | |
compute_selector, | |
min_node_selector, | |
max_node_selector, | |
security_selector], | |
outputs=status_txt) | |
gr.Markdown(""" | |
#### Pricing Table(CPU) - 2023/1/11 | |
""") | |
gr.Dataframe( | |
headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"], | |
datatype=["str", "str", "str", "number", "str", "str"], | |
row_count=8, | |
col_count=(6, "fixed"), | |
value=[ | |
["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"], | |
["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"], | |
["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"], | |
["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"], | |
["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"], | |
["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"], | |
["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"], | |
["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"], | |
] | |
) | |
gr.Markdown(""" | |
#### Pricing Table(GPU) - 2023/1/11 | |
""") | |
gr.Dataframe( | |
headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"], | |
datatype=["str", "str", "str", "number", "str", "str"], | |
row_count=6, | |
col_count=(6, "fixed"), | |
value=[ | |
["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"], | |
["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"], | |
["aws", "large", "$4.50", 4, "156B", "NVIDIA T4"], | |
["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"], | |
["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"], | |
["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"], | |
] | |
) | |
gr.TabbedInterface( | |
[demo2], ["Deploy on 🤗 Endpoint"] | |
).launch(enable_queue=True) |