File size: 6,913 Bytes
086820c
 
237716a
086820c
 
 
 
 
 
ae884c3
086820c
ae884c3
 
086820c
 
 
 
 
 
 
 
 
 
c91d82f
 
086820c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e083f8
 
 
 
 
 
086820c
 
 
 
 
 
 
 
 
7e083f8
 
 
086820c
 
 
 
be4bb72
086820c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135b090
086820c
 
 
 
 
 
c6f97f0
086820c
 
 
 
 
 
4bec5d9
 
 
 
 
 
8b71b4f
50266c5
4bec5d9
68affc8
086820c
 
 
 
 
6b4e6b7
086820c
 
68affc8
086820c
 
 
8b71b4f
086820c
c6f97f0
086820c
8b71b4f
135b090
c6f97f0
3c82907
db6d128
5c07bb1
db6d128
5c07bb1
646411c
 
 
 
086820c
ae884c3
 
 
237716a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47df049
 
237716a
086820c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237716a
 
 
 
 
086820c
 
a78b672
086820c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from matplotlib import cm 
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

import numpy as np

# import onnx
import onnxruntime as ort
# from onnx import helper
# from optimum.onnxruntime import ORTModel

# import pandas as pd
from PIL import Image

from scipy import special

# import torch
# import torch.utils.data

import gradio as gr
# from transformers import pipeline


# model_path = 'chlab/planet_detection_models/'
model_path = './models/'

# plotting a prameters
labels = 20
ticks = 14
legends = 14
text = 14
titles = 22
lw = 3
ps = 200
cmap = 'magma'

def normalize_array(x: list):

    '''Makes array between 0 and 1'''
    
    x = np.array(x)
    
    return (x - np.min(x)) / np.max(x - np.min(x))

def load_model(model: str, activation: bool=True):
    
    if activation:
        model += '_w_activation'
    
    options = ort.SessionOptions()
    options.intra_op_num_threads = 1
    options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
    provider = "CPUExecutionProvider"
    ort_session = ort.InferenceSession(model_path + '%s.onnx' % (model), options, providers=[provider])
    # ort_session = ORTModel.load_model(model_path + '%s.onnx' % (model))
    
    return ort_session

def get_activations(intermediate_model, image: list,
                               layer=None, vmax=2.5, sub_mean=True):
    
    '''Gets activations for a given input image'''
    
    
    input_name = intermediate_model.get_inputs()[0].name
    outputs = intermediate_model.run(None, {input_name: image})
    # outputs = intermediate_model(image)
    
    output_1 = outputs[1]
    output_2 = outputs[2]
    
    output = outputs[0][0]
    output = special.softmax(output)
    
    # origin = 'lower'
    
    # plt.rcParams['xtick.labelsize'] = ticks
    # plt.rcParams['ytick.labelsize'] = ticks
    
    # fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
    
    # ax1, ax2, ax3 = axs[0], axs[1], axs[2]
    
    in_image = np.sum(image[0, :, :, :], axis=0)
    in_image = normalize_array(in_image)
    
    # im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
    if layer is None:
        activation_1 = np.sum(output_1[0, :, :, :], axis=0)
        activation_2 = np.sum(output_2[0, :, :, :], axis=0)
    else:
        activation_1 = output_1[0, layer, :, :]
        activation_2 = output_2[0, layer, :, :]
    
    if sub_mean:
        activation_1 -= np.mean(activation_1)
        activation_1 = np.abs(activation_1)
        
        activation_2 -= np.mean(activation_2)
        activation_2 = np.abs(activation_2)
    
    
    # im2 = ax2.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1, 
    #                  origin=origin)
    # im3 = ax3.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1, 
    #                  origin=origin) 
    # ims = [im1, im2, im3]
        
    # for (i, ax) in enumerate(axs):
    #     divider = make_axes_locatable(ax)
    #     cax = divider.append_axes('right', size='5%', pad=0.05)
    #     fig.colorbar(ims[i], cax=cax, orientation='vertical')
        
    # ax1.set_title('Input', fontsize=titles)
    
    # plt.show()
    
    return output, in_image, activation_1, activation_2


def predict_and_analyze(model_name, num_channels, dim, image):
    
    '''Loads a model with activations, passes through image and shows activations
    
    The image must be a numpy array of shape (C, W, W) or (1, C, W, W) 
    
    '''
    
    num_channels = int(num_channels)
    W = int(dim)
    
    # image = image.read()
    
    # with open(image, 'rb') as f:
    #     im = f.readlines()
    # image = np.frombuffer(image)
    
    print("Loading data")
    image = np.load(image.name, allow_pickle=True)
    
    # image = image.reshape((num_channels, W, W))
    
    # W = int(np.sqrt(image.shape[1]))
    
    # image = image.reshape((num_channels, W, W))
    
    if len(image.shape) != 4:
        image = image[np.newaxis, :, :, :]
        
    assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
    
    model_name += '_%i' % (num_channels)
        
    print("Loading model")
    model = load_model(model_name, activation=True)
    print("Model loaded")
    
    print("Looking at activations")
    output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
    print("Activations and predictions finished")
    
    if output[0] < output[1]:
        output = 'Planet predicted with %f percent confidence' % (100*output[1])
    else:
        output = 'No planet predicted with %f percent confidence' % (100 - 100*output[0])
        
    input_image = normalize_array(input_image)
    activation_1 = normalize_array(activation_1)
    activation_2 = normalize_array(activation_2)
    
    # convert input image to RGB
    input_image = Image.fromarray(np.uint8(cm.magma(input_image)*255))
    
    print("Plotting")
    
    origin = 'lower'
    
    plt.rcParams['xtick.labelsize'] = ticks
    plt.rcParams['ytick.labelsize'] = ticks
    
    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(19, 8))
    
    ax1, ax2 = axs[0], axs[1]
    
    im1 = ax1.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1, 
                     origin=origin)
    im2 = ax2.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1, 
                     origin=origin) 
    
    ims = [im1, im2]
    
    for (i, ax) in enumerate(axs):
        divider = make_axes_locatable(ax)
        cax = divider.append_axes('right', size='5%', pad=0.05)
        fig.colorbar(ims[i], cax=cax, orientation='vertical')
        
    ax1.set_title('First Activation', fontsize=titles)
    ax2.set_title('Second Activation', fontsize=titles)
    
    print("Sending to Hugging Face")
    
    return output, input_image, fig


demo = gr.Interface(
    fn=predict_and_analyze,
    inputs=[gr.Dropdown(["regnet", "efficientnet"], 
                        value="efficientnet",
                        label="Model Selection",
                        show_label=True), 
            gr.Dropdown(["45", "61", "75"], 
                        value="61",
                        label="Number of Velocity Channels",
                        show_label=True), 
            gr.Dropdown(["600"], 
                        value="600",
                        label="Image Dimensions",
                        show_label=True), 
            gr.File(label="Input Data", show_label=True)],
    outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True), 
             gr.Image(label="Input Image", show_label=True), 
            #  gr.Image(label="Activation 1", show_label=True), 
            #  gr.Image(label="Actication 2", show_label=True)],
             gr.Plot(label="Activations", show_label=True) 
            #  gr.Plot(label="Actication 2", show_label=True)],
            ],
    title="Kinematic Planet Detector"
)
demo.launch()