File size: 5,809 Bytes
086820c 39370b9 086820c c91d82f 086820c 7e083f8 086820c 7e083f8 086820c be4bb72 086820c 135b090 086820c c6f97f0 086820c 4bec5d9 8b71b4f 50266c5 4bec5d9 68affc8 086820c 6b4e6b7 086820c 68affc8 086820c 8b71b4f 086820c c6f97f0 086820c 8b71b4f 135b090 c6f97f0 3c82907 db6d128 5c07bb1 db6d128 5c07bb1 646411c 086820c a78b672 086820c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from matplotlib import cm
import matplotlib.pyplot as plt
# from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# import onnx
import onnxruntime as ort
# from onnx import helper
from optimum.onnxruntime import ORTModel
import pandas as pd
from scipy import special
# import torch
# import torch.utils.data
import gradio as gr
# from transformers import pipeline
# model_path = 'chlab/planet_detection_models/'
model_path = './models/'
# plotting a prameters
labels = 20
ticks = 14
legends = 14
text = 14
titles = 22
lw = 3
ps = 200
cmap = 'magma'
def normalize_array(x: list):
'''Makes array between 0 and 1'''
x = np.array(x)
return (x - np.min(x)) / np.max(x - np.min(x))
def load_model(model: str, activation: bool=True):
if activation:
model += '_w_activation'
options = ort.SessionOptions()
options.intra_op_num_threads = 1
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
provider = "CPUExecutionProvider"
ort_session = ort.InferenceSession(model_path + '%s.onnx' % (model), options, providers=[provider])
# ort_session = ORTModel.load_model(model_path + '%s.onnx' % (model))
return ort_session
def get_activations(intermediate_model, image: list,
layer=None, vmax=2.5, sub_mean=True):
'''Gets activations for a given input image'''
input_name = intermediate_model.get_inputs()[0].name
outputs = intermediate_model.run(None, {input_name: image})
# outputs = intermediate_model(image)
output_1 = outputs[1]
output_2 = outputs[2]
output = outputs[0][0]
output = special.softmax(output)
# origin = 'lower'
# plt.rcParams['xtick.labelsize'] = ticks
# plt.rcParams['ytick.labelsize'] = ticks
# fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(28, 8))
# ax1, ax2, ax3 = axs[0], axs[1], axs[2]
in_image = np.sum(image[0, :, :, :], axis=0)
in_image = normalize_array(in_image)
# im1 = ax1.imshow(in_image, cmap=cmap, vmin=0, vmax=vmax, origin=origin)
if layer is None:
activation_1 = np.sum(output_1[0, :, :, :], axis=0)
activation_2 = np.sum(output_2[0, :, :, :], axis=0)
else:
activation_1 = output_1[0, layer, :, :]
activation_2 = output_2[0, layer, :, :]
if sub_mean:
activation_1 -= np.mean(activation_1)
activation_1 = np.abs(activation_1)
activation_2 -= np.mean(activation_2)
activation_2 = np.abs(activation_2)
# im2 = ax2.imshow(activation_1, cmap=cmap, #vmin=0, vmax=1,
# origin=origin)
# im3 = ax3.imshow(activation_2, cmap=cmap, #vmin=0, vmax=1,
# origin=origin)
# ims = [im1, im2, im3]
# for (i, ax) in enumerate(axs):
# divider = make_axes_locatable(ax)
# cax = divider.append_axes('right', size='5%', pad=0.05)
# fig.colorbar(ims[i], cax=cax, orientation='vertical')
# ax1.set_title('Input', fontsize=titles)
# plt.show()
return output, in_image, activation_1, activation_2
def predict_and_analyze(model_name, num_channels, dim, image):
'''Loads a model with activations, passes through image and shows activations
The image must be a numpy array of shape (C, W, W) or (1, C, W, W)
'''
num_channels = int(num_channels)
W = int(dim)
# image = image.read()
# with open(image, 'rb') as f:
# im = f.readlines()
# image = np.frombuffer(image)
print("Loading data")
image = np.load(image.name, allow_pickle=True)
# image = image.reshape((num_channels, W, W))
# W = int(np.sqrt(image.shape[1]))
# image = image.reshape((num_channels, W, W))
if len(image.shape) != 4:
image = image[np.newaxis, :, :, :]
assert image.shape == (1, num_channels, W, W), "Data is the wrong shape"
model_name += '_%i' % (num_channels)
print("Loading model")
model = load_model(model_name, activation=True)
print("Model loaded")
print("Looking at activations")
output, input_image, activation_1, activation_2 = get_activations(model, image, sub_mean=True)
print("Activations and predictions finished")
if output[0] < output[1]:
output = 'Planet predicted with %f percent confidence' % (100*output[1])
else:
output = 'No planet predicted with %f percent confidence' % (100 - 100*output[0])
input_image = normalize_array(input_image)
activation_1 = normalize_array(activation_1)
activation_2 = normalize_array(activation_2)
return output, input_image, activation_1, activation_2
demo = gr.Interface(
fn=predict_and_analyze,
inputs=[gr.Dropdown(["regnet", "efficientnet"],
value="efficientnet",
label="Model Selection",
show_label=True),
gr.Dropdown(["45", "61", "75"],
value="61",
label="Number of Velocity Channels",
show_label=True),
gr.Dropdown(["600"],
value="600",
label="Image Dimensions",
show_label=True),
gr.File(label="Input Data", show_label=True)],
outputs=[gr.Textbox(lines=1, label="Prediction", show_label=True),
gr.Image(label="Input Image", show_label=True),
gr.Image(label="Activation 1", show_label=True),
gr.Image(label="Actication 2", show_label=True)],
title="Kinematic Planet Detector"
)
demo.launch()
|