File size: 13,394 Bytes
1ef8976 a54c5a9 1ef8976 a54c5a9 7f254c6 a54c5a9 7f254c6 a54c5a9 7f254c6 1ef8976 40d9906 1ef8976 ac89c56 1ef8976 ac89c56 1ef8976 ac89c56 1ef8976 ac89c56 1ef8976 a54c5a9 a2897e4 abdb6f5 b531590 0579617 a2897e4 4193cf5 a2897e4 7f254c6 a6006b3 7f254c6 a54c5a9 40d9906 1ef8976 a54c5a9 1ef8976 ac89c56 1683f88 ac89c56 1ef8976 c52a63e 1ef8976 7f254c6 9c88bfd 7f254c6 9c88bfd 7f254c6 1ef8976 e2740ad a54c5a9 89e9fa4 a54c5a9 4d0d80e a54c5a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# Datetime
import datetime
# Manipulate
import re
import json
import pandas as pd
# App
import gradio as gr
# GLiNER Model
from gliner import GLiNER
# Transformers
from transformers import pipeline
# Load GLiNER Model
model = GLiNER.from_pretrained("chris32/gliner_multi_pii_real_state-v2")
model.eval()
# BERT Model
model_name = "chris32/distilbert-base-spanish-uncased-finetuned-text-intelligence"
pipe = pipeline(model = model_name, device = "cpu")
# Global Variables: For Post Cleaning Inferences
YEAR_OF_REMODELING_LIMIT = 100
CURRENT_YEAR = int(datetime.date.today().year)
SCORE_LIMIT_SIMILARITY_NAMES = 70
def clean_text(text):
# Replace HTML line breaks with the specified character
replacement_char = " # "
text = re.sub(r'<br\s*\/?>', replacement_char, text)
# Remove HTML tags and special characters
cleaned_text = re.sub(r'<[^>]*>', '', text)
cleaned_text = re.sub(r' ', ' ', cleaned_text)
cleaned_text = re.sub(r'&', '&', cleaned_text)
# Drop punctuation marks
#regex = '[\\!\\"\\#\\$\\%\\&\\\'\\(\\)\\*\\+\\,\\-\\.\\/\\:\\;\\<\\=\\>\\?\\@\\[\\\\\\]\\^_\\`\\{\\|\\}\\~]'
#cleaned_text = re.sub(regex , ' ', cleaned_text)
# Replace multiple spaces with a single one
cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
# Remove leading and trailing spaces
cleaned_text = cleaned_text.strip()
# Replace Duplicated "." and ","
cleaned_text = cleaned_text.replace("..", ".").replace(",,", ",")
return cleaned_text
def format_gliner_predictions(prediction):
if len(prediction) > 0:
# Select the Entity value with the Greater Score for each Entity Name
prediction_df = pd.DataFrame(prediction)\
.sort_values("score", ascending = False)\
.drop_duplicates(subset = "label", keep = "first")
# Add Position Column
prediction_df["position"] = prediction_df.apply(lambda x: (x["start"], x["end"]) ,axis = 1)
# Add Columns Label for Text and Probability
prediction_df["label_text"] = prediction_df["label"].apply(lambda x: f"pred_{x}")
prediction_df["label_prob"] = prediction_df["label"].apply(lambda x: f"prob_{x}")
prediction_df["label_position"] = prediction_df["label"].apply(lambda x: f"pos_{x}")
# Format Predictions
entities = prediction_df.set_index("label_text")["text"].to_dict()
entities_probs = prediction_df.set_index("label_prob")["score"].to_dict()
entities_positions = prediction_df.set_index("label_position")["position"].to_dict()
predictions_formatted = {**entities, **entities_probs, **entities_positions}
return predictions_formatted
else:
return dict()
def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict):
# Prediction and Probability
prediction = row[f"pred_{feature_name}"]
prob = row[f"prob_{feature_name}"]
# Clean and Return Prediction only if the Threshold is lower.
if prob > threshols_dict[feature_name]:
clean_function = clean_functions_dict[feature_name]
prediction_clean = clean_function(prediction)
return prediction_clean
else:
return None
surfaces_words_to_omit = ["ha", "hect", "lts", "litros", "mil"]
tower_name_key_words_to_keep = ["torr", "towe"]
def has_number(string):
return bool(re.search(r'\d', string))
def contains_multiplication(string):
# Regular expression pattern to match a multiplication operation
pattern = r'\b([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*[xX]\s*([\d,]+(?:\.\d+)?)\s*(?:\w+\s*)*\b'
# Search for the pattern in the string
match = re.search(pattern, string)
# If a match is found, return True, otherwise False
if match:
return True
else:
return False
def extract_first_number_from_string(text):
if isinstance(text, str):
match = re.search(r'\b\d*\.?\d+\b|\d*\.?\d+', text)
if match:
start_pos = match.start()
end_pos = match.end()
number = int(float(match.group()))
return number, start_pos, end_pos
else:
return None, None, None
else:
return None, None, None
def get_character(string, index):
if len(string) > index:
return string[index]
else:
return None
def find_valid_comma_separated_number(string):
# This regular expression matches strings starting with 1 to 3 digits followed by a comma and 3 digits. It ensures no other digits or commas follow or the string ends.
match = re.match(r'^(\d{1,3},\d{3})(?:[^0-9,]|$)', string)
if match:
valid_number = int(match.group(1).replace(",", ""))
return valid_number
else:
return None
def extract_surface_from_string(string: str) -> int:
if isinstance(string, str):
# 1. Validate if it Contains a Number
if not(has_number(string)): return None
# 2. Validate if it No Contains Multiplication
if contains_multiplication(string): return None
# 3. Validate if it No Contains Words to Omit
if any([word in string.lower() for word in surfaces_words_to_omit]): return None
# 4. Extract First Number
number, start_pos, end_pos = extract_first_number_from_string(string)
# 5. Extract Valid Comma Separated Number
if isinstance(number, int):
if get_character(string, end_pos) == ",":
valid_comma_separated_number = find_valid_comma_separated_number(string[start_pos: -1])
return valid_comma_separated_number
else:
return number
else:
return None
else:
return None
def clean_prediction(row, feature_name, threshols_dict, clean_functions_dict):
# Prediction and Probability
prediction = row[f"pred_{feature_name}"]
prob = row[f"prob_{feature_name}"]
# Clean and Return Prediction only if the Threshold is lower.
if prob > threshols_dict[feature_name]:
clean_function = clean_functions_dict[feature_name]
prediction_clean = clean_function(prediction)
return prediction_clean
else:
return None
def extract_remodeling_year_from_string(string):
if isinstance(string, str):
# 1. Detect 4-digit year
match = re.search(r'\b\d{4}\b', string)
if match:
year_predicted = int(match.group())
else:
# 2. Detect quantity of years followed by "year", "years", "anio", "año", or "an"
match = re.search(r'(\d+) (year|years|anio|año|an|añ)', string.lower(), re.IGNORECASE)
if match:
past_years_predicted = int(match.group(1))
year_predicted = CURRENT_YEAR - past_years_predicted
else:
return None
# 3. Detect if it is a valid year
is_valid_year = (year_predicted <= CURRENT_YEAR) and (YEAR_OF_REMODELING_LIMIT > CURRENT_YEAR - year_predicted)
return year_predicted if is_valid_year else None
return None
def extract_valid_string_left_dotted(string, text, pos):
if isinstance(string, str):
# String Position
left_pos, rigth_pos = pos
# Verify if the Left Position is not too close to the beginning of the text.
if left_pos < 5:
return None
if string[0].isdigit():
# 1. Take a subtext with 5 more characters to the left of the string.
sub_text = text[left_pos - 5: rigth_pos]
# 2. If the string has no dots to the left, return the original string.
if text[left_pos - 1] == ".":
# 3. If the string has a left dot but no preceding digit, return the original string.
if text[left_pos - 2].isdigit():
# 4. If the string has a left dot, with 3 left digits, and the fourth left value isn't ',', '.', or "''", it returns the new string.
pattern = r'^(?![\d.,])\D*\d{1,3}\.' + re.escape(string)
match = re.search(pattern, sub_text)
if match:
return match.group(0)
else:
return None
else:
return string
else:
return string
else:
return string
else:
return None
# Cleaning
clean_functions_dict = {
"SUPERFICIE_TERRAZA": extract_surface_from_string,
"SUPERFICIE_JARDIN": extract_surface_from_string,
"SUPERFICIE_TERRENO": extract_surface_from_string,
"SUPERFICIE_HABITABLE": extract_surface_from_string,
"SUPERFICIE_BALCON": extract_surface_from_string,
"AÑO_REMODELACIÓN": extract_remodeling_year_from_string,
"NOMBRE_COMPLETO_ARQUITECTO": lambda x: x,
'NOMBRE_CLUB_GOLF': lambda x: x,
'NOMBRE_TORRE': lambda x: x,
'NOMBRE_CONDOMINIO': lambda x: x,
'NOMBRE_DESARROLLO': lambda x: x,
}
threshols_dict = {
"SUPERFICIE_TERRAZA": 0.9,
"SUPERFICIE_JARDIN": 0.9,
"SUPERFICIE_TERRENO": 0.9,
"SUPERFICIE_HABITABLE": 0.9,
"SUPERFICIE_BALCON": 0.9,
"AÑO_REMODELACIÓN": 0.9,
"NOMBRE_COMPLETO_ARQUITECTO": 0.9,
'NOMBRE_CLUB_GOLF': 0.9,
'NOMBRE_TORRE': 0.9,
'NOMBRE_CONDOMINIO': 0.9,
'NOMBRE_DESARROLLO': 0.9,
}
threshols_dict = {
"SUPERFICIE_BALCON": 0.7697697697697697,
"SUPERFICIE_TERRAZA": 0.953953953953954,
"SUPERFICIE_JARDIN": 0.9519519519519519, #idk
"SUPERFICIE_TERRENO": 0.980980980980981 - 0.05,
"SUPERFICIE_HABITABLE": 0.978978978978979 - 0.02, #idk if not "SUPERFICIE_HABITABLE": 0.988988988988989,
"AÑO_REMODELACIÓN": 0.996996996996997 - 0.01,
"NOMBRE_COMPLETO_ARQUITECTO": 0.8878878878878879,
"NOMBRE_CLUB_GOLF": 0.8708708708708709, #idk if not "NOMBRE_CLUB_GOLF": 0.9729729729729729,
"NOMBRE_TORRE": 0.8458458458458459 - 0.04,
"NOMBRE_CONDOMINIO": 0.965965965965966,
"NOMBRE_DESARROLLO": 0.9229229229229229
}
label_names_dict = {
'LABEL_0': None,
'LABEL_1': 1,
'LABEL_2': 2,
'LABEL_3': 3,
}
BERT_SCORE_LIMIT = 0.980819808198082
def extract_max_label_score(probabilities):
# Find the dictionary with the maximum score
max_item = max(probabilities, key=lambda x: x['score'])
# Extract the label and the score
label = max_item['label']
score = max_item['score']
return label, score
def clean_prediction_bert(label, score):
if score > BERT_SCORE_LIMIT:
label_formatted = label_names_dict.get(label, None)
return label_formatted
else:
return None
# BERT Inference Config
pipe_config = {
"batch_size": 8,
"truncation": True,
"max_length": 250,
"add_special_tokens": True,
"return_all_scores": True,
"padding": True,
}
def generate_answer(text):
labels = [
'SUPERFICIE_JARDIN',
'NOMBRE_CLUB_GOLF',
'SUPERFICIE_TERRENO',
'SUPERFICIE_HABITABLE',
'SUPERFICIE_TERRAZA',
'NOMBRE_COMPLETO_ARQUITECTO',
'SUPERFICIE_BALCON',
'NOMBRE_DESARROLLO',
'NOMBRE_TORRE',
'NOMBRE_CONDOMINIO',
'AÑO_REMODELACIÓN'
]
# Clean Text
text = clean_text(text)
# Inference
entities = model.predict_entities(text, labels, threshold=0.4)
# Format Prediction Entities
entities_formatted = format_gliner_predictions(entities)
# Extract valid string left dotted
feature_surfaces = ['SUPERFICIE_BALCON', 'SUPERFICIE_TERRAZA', 'SUPERFICIE_JARDIN', 'SUPERFICIE_TERRENO', 'SUPERFICIE_HABITABLE']
for feature_name in feature_surfaces:
if entities_formatted.get(f"pred_{feature_name}", None) != None:
entities_formatted[f"pred_{feature_name}"] = extract_valid_string_left_dotted(entities_formatted[f"pred_{feature_name}"], text, entities_formatted[f"pos_{feature_name}"])
# Clean Entities
entities_names = list({c.replace("pred_", "").replace("prob_", "").replace("pos_", "") for c in list(entities_formatted.keys())})
entities_cleaned = dict()
for feature_name in entities_names:
entity_prediction_cleaned = clean_prediction(entities_formatted, feature_name, threshols_dict, clean_functions_dict)
if isinstance(entity_prediction_cleaned, str) or isinstance(entity_prediction_cleaned, int):
entities_cleaned[feature_name] = entity_prediction_cleaned
# BERT Inference
predictions = pipe([text], **pipe_config)
# Format Prediction
label, score = extract_max_label_score(predictions[0])
entities_formatted["NIVELES_CASA"] = label
entities_formatted["prob_NIVELES_CASA"] = score
prediction_cleaned = clean_prediction_bert(label, score)
if isinstance(prediction_cleaned, int):
entities_cleaned["NIVELES_CASA"] = prediction_cleaned
result_json = json.dumps(entities_cleaned, indent = 4, ensure_ascii = False)
return "Clean Result:" + result_json + "\n \n" + "Raw Result:" + json.dumps(entities_formatted, indent = 4, ensure_ascii = False)
# Cambiar a entrada de texto
#text_input = gr.inputs.Textbox(lines=15, label="Input Text")
iface = gr.Interface(
fn=generate_answer,
inputs="text",
outputs="text",
title="Text Intelligence for Real State",
description="Input text describing the property."
)
iface.launch()
|