File size: 5,937 Bytes
42b4218 0dbfc34 42b4218 f02e31c 1551a7f f02e31c 6daf1d7 8aa102f 638f9f7 f02e31c 1551a7f 0dbfc34 638f9f7 f02e31c 638f9f7 f02e31c 638f9f7 f02e31c 1551a7f 638f9f7 f02e31c 8aa102f 0dbfc34 f02e31c 638f9f7 f02e31c 0dbfc34 2acecda 42b4218 f02e31c 42b4218 8aa102f f02e31c 638f9f7 6daf1d7 f02e31c 6daf1d7 f02e31c 42b4218 638f9f7 42b4218 638f9f7 8aa102f 2acecda f02e31c 8aa102f f02e31c 8aa102f f02e31c 6daf1d7 638f9f7 1551a7f 8aa102f f02e31c d2be2d3 42b4218 8aa102f f02e31c 638f9f7 6daf1d7 638f9f7 f02e31c 8aa102f 0dbfc34 f02e31c 638f9f7 1551a7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
options(error = NULL)
library(shiny)
library(shinydashboard)
library(dplyr)
library(readr)
library(sf)
#library(cartogram) # optional if you decide to do cartograms later
library(ggplot2)
library(rnaturalearth)
library(rnaturalearthdata)
library(countrycode)
# =============================
# UI
# =============================
ui <- dashboardPage(
# Use black skin for the dashboard
skin = "black",
dashboardHeader(
title = span(
style = "font-weight: 600; font-size: 18px;",
"Country Representation"
)
),
dashboardSidebar(
sidebarMenu(
menuItem("Map Type", tabName = "cartogramTab", icon = icon("globe"))
),
div(
style = "margin: 15px;",
selectInput(
inputId = "indexChoice",
label = "Select Representation Index:",
choices = c("Overall", "RepresentationGap", "Ethnicity",
"Gender", "Religion", "Language"),
selected = "Overall"
)
)
),
dashboardBody(
# Bring in the OCR A Extended font from Google Fonts
tags$head(
tags$link(
href = "https://fonts.googleapis.com/css2?family=OCR+A+Extended&display=swap",
rel = "stylesheet"
),
tags$style(HTML("
/* Force OCR A Extended font across the entire UI and all HTML elements */
html, body, h1, h2, h3, h4, h5, h6, p, div, span, label, input, button, select,
.box, .content-wrapper, .main-sidebar, .main-header .navbar, .main-header .logo,
.sidebar-menu, .sidebar-menu li a, .sidebar-menu .fa {
font-family: 'OCR A Extended', monospace !important;
}
/* Header gradient background */
.main-header .navbar {
background: linear-gradient(to right, #3b6978, #204051) !important;
}
/* Logo area (left corner of the header) */
.main-header .logo {
background: #1b2a2f !important;
color: #ffffff !important;
border-bottom: none;
font-size: 18px;
font-weight: 600;
}
/* Sidebar background */
.main-sidebar {
background-color: #1b2a2f !important;
}
/* Active or hovered tab in the sidebar */
.sidebar-menu > li.active > a,
.sidebar-menu > li:hover > a {
background-color: #344e5c !important;
border-left-color: #78cdd7 !important;
color: #ffffff !important;
}
/* Sidebar menu item icons */
.sidebar-menu .fa {
color: #78cdd7 !important;
}
/* Sidebar menu item text */
.sidebar-menu > li > a {
color: #b8c7ce !important;
font-size: 15px;
font-weight: 500;
}
/* Customize the boxes */
.box {
border-top: none !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
border-radius: 6px;
}
.box.box-solid > .box-header {
background-color: #204051;
color: #fff;
border-radius: 6px 6px 0 0;
}
/* Plot box spacing */
.box .box-body {
padding: 0 !important;
}
/* Footer text styling (plot captions, etc.) */
.small, small {
font-size: 75%;
}
"))
),
tabItems(
tabItem(
tabName = "cartogramTab",
fluidRow(
box(
width = 12,
title = strong("Global Leadership Project (GLP)"),
solidHeader = TRUE,
div(style = "height: 80vh; padding: 10px;",
plotOutput("cartogramPlot", height = "100%")
)
)
)
)
)
)
)
# =============================
# SERVER
# =============================
server <- function(input, output, session) {
# ---- Read CSV data and create ISO3 codes ----
rankings_data <- reactive({
read_csv("CountryRepresentationRankings.csv") %>%
mutate(iso_a3 = countrycode(Country, origin = "country.name", destination = "iso3c"))
})
# ---- Read/prepare world map shapefile ----
world_sf <- reactive({
ne_countries(scale = "medium", returnclass = "sf") %>%
dplyr::select(name, iso_a3, pop_est, geometry) %>%
st_transform(crs = "ESRI:54009") # Mollweide projection
})
# ---- Create cartogram (currently a regular map) ----
cartogram_sf <- reactive({
merged_sf <- world_sf() %>%
left_join(rankings_data(), by = "iso_a3")
# Filter out NA values in 'Overall' to avoid missing countries
merged_sf <- merged_sf[!is.na(merged_sf$Overall),]
return(merged_sf)
})
# ---- Plot output ----
output$cartogramPlot <- renderPlot({
req(input$indexChoice)
index_col <- input$indexChoice
plot_data <- cartogram_sf()
ggplot(plot_data) +
geom_sf(aes_string(fill = index_col), color = "grey20", size = 0.1) +
scale_fill_viridis_c(option = "D", na.value = "white") +
coord_sf(expand = FALSE) +
# Force OCR A Extended font in the plot
#theme_void(base_size = 14, base_family = "OCR A Extended") +
theme_void(base_size = 14, base_family = "Courier New") +
labs(
fill = paste(index_col, "Index"),
title = "Country Representation Rankings",
subtitle = "Map Colored by Selected Representation Index",
caption = "Source: Global Leadership Project (GLP) & Natural Earth"
) +
theme(
plot.title = element_text(face = "bold", hjust = 0.5, size = 20),
plot.subtitle = element_text(hjust = 0.5, size = 14),
plot.caption = element_text(hjust = 1, size = 10),
legend.position = "bottom",
legend.direction = "horizontal",
legend.key.width = unit(2, "cm")
)
})
}
# =============================
# Launch the Shiny App
# =============================
shinyApp(ui = ui, server = server)
|