File size: 7,342 Bytes
42b4218
0dbfc34
42b4218
f02e31c
 
 
 
 
6daf1d7
7f0f334
 
8aa102f
638f9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02e31c
 
1551a7f
0dbfc34
638f9f7
 
 
 
 
 
 
 
 
f02e31c
 
638f9f7
f02e31c
638f9f7
 
 
 
 
 
 
 
 
 
 
 
 
7f0f334
638f9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0f334
638f9f7
 
 
 
7f0f334
638f9f7
 
 
 
 
 
7f0f334
638f9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02e31c
 
 
 
 
 
1551a7f
638f9f7
7f0f334
 
 
 
638f9f7
f02e31c
 
8aa102f
 
 
0dbfc34
 
f02e31c
638f9f7
f02e31c
0dbfc34
2acecda
42b4218
f02e31c
 
42b4218
8aa102f
 
f02e31c
 
 
638f9f7
6daf1d7
f02e31c
 
6daf1d7
f02e31c
 
42b4218
7f0f334
42b4218
7f0f334
8aa102f
2acecda
7f0f334
 
f02e31c
8aa102f
f02e31c
7f0f334
8aa102f
7f0f334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6daf1d7
 
1551a7f
8aa102f
f02e31c
 
d2be2d3
42b4218
8aa102f
f02e31c
638f9f7
 
 
6daf1d7
638f9f7
 
f02e31c
7f0f334
 
 
 
 
 
 
 
 
 
 
8aa102f
0dbfc34
 
f02e31c
 
 
638f9f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
options(error = NULL)
library(shiny)
library(shinydashboard)
library(dplyr)
library(readr)
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(countrycode)
library(ggplot2)
library(ggiraph)       # <-- for interactive tooltips

# =============================
#            UI
# =============================
ui <- dashboardPage(
  
  # Use black skin for the dashboard
  skin = "black",
  
  dashboardHeader(
    title = span(
      style = "font-weight: 600; font-size: 18px;",
      "Country Representation"
    )
  ),
  
  dashboardSidebar(
    sidebarMenu(
      menuItem("Map Type", tabName = "cartogramTab", icon = icon("globe"))
    ),
    div(
      style = "margin: 15px;",
      selectInput(
        inputId = "indexChoice",
        label = "Select Representation Index:",
        choices = c("Overall", "RepresentationGap", "Ethnicity",
                    "Gender", "Religion", "Language"),
        selected = "Overall"
      )
    )
  ),
  
  dashboardBody(
    # Bring in the OCR A Extended font from Google Fonts
    tags$head(
      tags$link(
        href = "https://fonts.googleapis.com/css2?family=OCR+A+Extended&display=swap",
        rel = "stylesheet"
      ),
      tags$style(HTML("
        /* Force OCR A Extended font across the entire UI and all HTML elements */
        html, body, h1, h2, h3, h4, h5, h6, p, div, span, label, input, button, select,
        .box, .content-wrapper, .main-sidebar, .main-header .navbar, .main-header .logo,
        .sidebar-menu, .sidebar-menu li a, .sidebar-menu .fa {
          font-family: 'OCR A Extended', monospace !important;
        }

        /* Header gradient background */
        .main-header .navbar {
          background: linear-gradient(to right, #3b6978, #204051) !important;
        }

        /* Logo area (left corner of the header) */
        .main-header .logo {
          background: #1b2a2f !important;
          color: #ffffff !important;
          border-bottom: none;
          font-size: 18px;
          font-weight: 600;
        }

        /* Sidebar background */
        .main-sidebar {
          background-color: #1b2a2f !important;
        }

        /* Active or hovered tab in the sidebar */
        .sidebar-menu > li.active > a,
        .sidebar-menu > li:hover > a {
          background-color: #344e5c !important;
          border-left-color: #78cdd7 !important;
          color: #ffffff !important;
        }

        /* Sidebar menu item icons */
        .sidebar-menu .fa {
          color: #78cdd7 !important;
        }

        /* Sidebar menu item text */
        .sidebar-menu > li > a {
          color: #b8c7ce !important;
          font-size: 15px;
          font-weight: 500;
        }

        /* Customize the boxes */
        .box {
          border-top: none !important;
          box-shadow: 0 4px 8px rgba(0,0,0,0.1);
          border-radius: 6px;
        }
        .box.box-solid > .box-header {
          background-color: #204051;
          color: #fff;
          border-radius: 6px 6px 0 0;
        }

        /* Plot box spacing */
        .box .box-body {
          padding: 0 !important;
        }

        /* Footer text styling (plot captions, etc.) */
        .small, small {
          font-size: 75%;
        }
      "))
    ),
    
    tabItems(
      tabItem(
        tabName = "cartogramTab",
        fluidRow(
          box(
            width = 12,
            title = strong("Global Leadership Project (GLP)"),
            solidHeader = TRUE,
            # Instead of plotOutput, we use girafeOutput for interactive tooltips
            div(
              style = "height: 80vh; padding: 10px;",
              girafeOutput("cartogramPlot", width = "100%", height = "100%")
            )
          )
        )
      )
    )
  )
)

# =============================
#          SERVER
# =============================
server <- function(input, output, session) {
  
  # ---- Read CSV data and create ISO3 codes ----
  rankings_data <- reactive({
    read_csv("CountryRepresentationRankings.csv") %>%
      mutate(iso_a3 = countrycode(Country, origin = "country.name", destination = "iso3c"))
  })
  
  # ---- Read/prepare world map shapefile ----
  world_sf <- reactive({
    ne_countries(scale = "medium", returnclass = "sf") %>%
      dplyr::select(name, iso_a3, pop_est, geometry) %>%
      st_transform(crs = "ESRI:54009")  # Mollweide projection
  })
  
  # ---- Create cartogram (currently a regular map) ----
  cartogram_sf <- reactive({
    merged_sf <- world_sf() %>%
      left_join(rankings_data(), by = "iso_a3")
    # Filter out NA values in 'Overall' (or whichever main column) to avoid missing countries
    merged_sf <- merged_sf[!is.na(merged_sf$Overall),]
    return(merged_sf)
  })
  
  # ---- Plot output (using ggiraph for tooltips) ----
  output$cartogramPlot <- renderGirafe({
    req(input$indexChoice)
    
    plot_data <- cartogram_sf()
    index_col <- input$indexChoice
    
    # Build a tooltip string showing some key columns for each country.
    # Modify this as desired to include more (or fewer) details.
    plot_data$tooltip_text <- paste0(
      "<b>Country:</b> ", plot_data$Country, "<br/>",
      "<b>Overall:</b> ", ifelse(!is.na(plot_data$Overall), plot_data$Overall, "N/A"), "<br/>",
      "<b>Representation Gap:</b> ", ifelse(!is.na(plot_data$RepresentationGap), plot_data$RepresentationGap, "N/A"), "<br/>",
      "<b>Ethnicity:</b> ", ifelse(!is.na(plot_data$Ethnicity), plot_data$Ethnicity, "N/A"), "<br/>",
      "<b>Gender:</b> ", ifelse(!is.na(plot_data$Gender), plot_data$Gender, "N/A"), "<br/>",
      "<b>Religion:</b> ", ifelse(!is.na(plot_data$Religion), plot_data$Religion, "N/A"), "<br/>",
      "<b>Language:</b> ", ifelse(!is.na(plot_data$Language), plot_data$Language, "N/A")
    )
    
    # Create a ggplot with geom_sf_interactive so we can assign tooltips
    p <- ggplot(plot_data) +
      geom_sf_interactive(
        aes_string(
          fill = index_col,
          tooltip = "tooltip_text",
          data_id = "iso_a3"    # required for hover/click tracking
        ),
        color = "grey20",
        size = 0.1
      ) +
      scale_fill_viridis_c(option = "D", na.value = "white") +
      coord_sf(expand = FALSE) +
      theme_void(base_size = 14, base_family = "Courier New") +
      labs(
        fill = paste(index_col, "Index"),
        title = "Country Representation Rankings",
        subtitle = "Map Colored by Selected Representation Index",
        caption = "Source: Global Leadership Project (GLP) & Natural Earth"
      ) +
      theme(
        plot.title      = element_text(face = "bold", hjust = 0.5, size = 20),
        plot.subtitle   = element_text(hjust = 0.5, size = 14),
        plot.caption    = element_text(hjust = 1, size = 10),
        legend.position = "bottom",
        legend.direction = "horizontal",
        legend.key.width = unit(2, "cm")
      )
    
    # Wrap the ggplot in a girafe object
    girafe(
      ggobj = p,
      width_svg  = 10,
      height_svg = 6,
      options = list(
        # You can style the tooltip background here
        opts_tooltip(css = "background-color: white; font-family: 'OCR A Extended', monospace;")
      )
    )
  })
}

# =============================
#   Launch the Shiny App
# =============================
shinyApp(ui = ui, server = server)