File size: 19,134 Bytes
93af3e2
 
b7cfbcf
93af3e2
c1ad781
597b21e
 
93af3e2
 
 
 
 
 
 
58d1893
b0a9f3e
082dbe6
93af3e2
 
 
082dbe6
93af3e2
58d1893
597b21e
93af3e2
 
 
 
 
 
 
 
 
 
597b21e
b0a9f3e
93af3e2
b0a9f3e
93af3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a9f3e
93af3e2
 
597b21e
93af3e2
 
 
 
 
 
 
 
 
b0a9f3e
93af3e2
 
 
 
 
 
 
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
 
b0a9f3e
 
 
 
 
 
93af3e2
58d1893
93af3e2
 
be0c600
b0a9f3e
 
 
 
93af3e2
 
 
b0a9f3e
 
 
 
 
 
 
 
 
 
93af3e2
 
 
 
 
 
 
 
 
 
b0a9f3e
 
 
 
 
93af3e2
 
 
 
 
 
 
 
 
 
 
 
b0a9f3e
93af3e2
b0a9f3e
93af3e2
 
 
 
 
 
be0c600
93af3e2
 
b0a9f3e
 
93af3e2
 
b0a9f3e
93af3e2
 
 
 
 
 
 
 
 
be0c600
93af3e2
 
 
 
b0a9f3e
93af3e2
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
 
 
 
 
 
b0a9f3e
 
93af3e2
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
b0a9f3e
 
 
 
 
 
 
 
93af3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a9f3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93af3e2
 
 
 
b0a9f3e
93af3e2
 
 
b0a9f3e
93af3e2
b0a9f3e
93af3e2
 
 
 
b7cfbcf
93af3e2
 
 
 
 
b0a9f3e
93af3e2
 
 
 
 
 
b0a9f3e
93af3e2
a1ef78c
93af3e2
a1ef78c
93af3e2
 
 
 
 
a1ef78c
93af3e2
 
 
 
 
a1ef78c
93af3e2
a1ef78c
93af3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0a9f3e
93af3e2
 
 
 
b0a9f3e
 
93af3e2
b0a9f3e
93af3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ef78c
93af3e2
 
 
 
 
c1ad781
93af3e2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxImg2ImgPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests

# For ESRGAN (optional - will work without it)
try:
    from basicsr.archs.rrdbnet_arch import RRDBNet
    from basicsr.utils import img2tensor, tensor2img
    USE_ESRGAN = True
except ImportError:
    USE_ESRGAN = False
    warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")

css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
}
.main-header {
    text-align: center;
    margin-bottom: 2rem;
}
"""

# Device setup
power_device = "ZeroGPU"
device = "cpu"  # Start on CPU, will move to GPU when needed

# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")

# Download FLUX model
print("πŸ“₯ Downloading FLUX model...")
model_path = snapshot_download(
    repo_id="black-forest-labs/FLUX.1-dev", 
    repo_type="model", 
    ignore_patterns=["*.md", "*.gitattributes"],
    local_dir="FLUX.1-dev",
    token=huggingface_token,
)

# Load Florence-2 model for image captioning on CPU
print("πŸ“₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
    "microsoft/Florence-2-large", 
    torch_dtype=torch.float32,  # Use float32 on CPU to avoid dtype issues
    trust_remote_code=True,
    attn_implementation="eager"
).to(device)
florence_processor = AutoProcessor.from_pretrained(
    "microsoft/Florence-2-large", 
    trust_remote_code=True
)

# Load FLUX Img2Img pipeline on CPU
print("πŸ“₯ Loading FLUX Img2Img...")
pipe = FluxImg2ImgPipeline.from_pretrained(
    model_path, 
    torch_dtype=torch.float32  # Start with float32 on CPU
)
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()

print("βœ… All models loaded successfully!")

# Download ESRGAN model if using
if USE_ESRGAN:
    try:
        esrgan_path = "4x-UltraSharp.pth"
        if not os.path.exists(esrgan_path):
            url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
            print("πŸ“₯ Downloading ESRGAN model...")
            with open(esrgan_path, "wb") as f:
                f.write(requests.get(url).content)
        esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        state_dict = torch.load(esrgan_path, map_location='cpu')['params_ema']
        esrgan_model.load_state_dict(state_dict)
        esrgan_model.eval()
        print("βœ… ESRGAN model loaded!")
    except Exception as e:
        print(f"Failed to load ESRGAN: {e}")
        USE_ESRGAN = False

MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192


def make_multiple_16(n):
    """Round up to nearest multiple of 16"""
    return ((n + 15) // 16) * 16


def generate_caption(image):
    """Generate detailed caption using Florence-2"""
    try:
        # Ensure model is on the correct device with correct dtype
        if florence_model.device.type == "cuda":
            florence_model.to(torch.float16)
        
        task_prompt = "<MORE_DETAILED_CAPTION>"
        prompt = task_prompt

        inputs = florence_processor(
            text=prompt, 
            images=image, 
            return_tensors="pt"
        ).to(florence_model.device)

        # Ensure dtype consistency
        if florence_model.device.type == "cuda":
            if hasattr(inputs, "pixel_values"):
                inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)

        generated_ids = florence_model.generate(
            input_ids=inputs["input_ids"],
            pixel_values=inputs["pixel_values"],
            max_new_tokens=1024,
            num_beams=3,
            do_sample=True,
        )
        
        generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
        parsed_answer = florence_processor.post_process_generation(
            generated_text, 
            task=task_prompt, 
            image_size=(image.width, image.height)
        )
        
        caption = parsed_answer[task_prompt]
        return caption
    except Exception as e:
        print(f"Caption generation failed: {e}")
        return "a high quality detailed image"


def process_input(input_image, upscale_factor):
    """Process input image and handle size constraints"""
    w, h = input_image.size
    w_original, h_original = w, h
    
    was_resized = False
    
    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
        )
        gr.Info(
            f"Requested output image is too large. Resizing input to fit within pixel budget."
        )
        target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
        scale = (target_input_pixels / (w * h)) ** 0.5
        new_w = make_multiple_16(int(w * scale))
        new_h = make_multiple_16(int(h * scale))
        input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
        was_resized = True
    
    return input_image, w_original, h_original, was_resized


def load_image_from_url(url):
    """Load image from URL"""
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        return Image.open(response.raw)
    except Exception as e:
        raise gr.Error(f"Failed to load image from URL: {e}")


def esrgan_upscale(image, scale=4):
    """Upscale image using ESRGAN or fallback to LANCZOS"""
    if not USE_ESRGAN:
        return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
    
    try:
        img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
        with torch.no_grad():
            # Move model to same device as image tensor
            if torch.cuda.is_available():
                esrgan_model.to("cuda")
                img = img.to("cuda")
            output = esrgan_model(img.unsqueeze(0)).squeeze()
        output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
        return Image.fromarray(output_img)
    except Exception as e:
        print(f"ESRGAN upscale failed: {e}, falling back to LANCZOS")
        return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)


def create_blend_mask(width, height, overlap, edge_x, edge_y):
    """Create a gradient blend mask for smooth tile transitions"""
    mask = Image.new('L', (width, height), 255)
    pixels = mask.load()
    
    # Horizontal blend (left edge)
    if edge_x and overlap > 0:
        for x in range(min(overlap, width)):
            alpha = x / overlap
            for y in range(height):
                pixels[x, y] = int(255 * alpha)
    
    # Vertical blend (top edge)
    if edge_y and overlap > 0:
        for y in range(min(overlap, height)):
            alpha = y / overlap
            for x in range(width):
                # Combine with existing alpha if both edges
                existing = pixels[x, y] / 255.0
                combined = min(existing, alpha)
                pixels[x, y] = int(255 * combined)
    
    return mask


def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=64):
    """Tiled Img2Img to handle large images"""
    w, h = image.size
    
    # Ensure tile_size is divisible by 16
    tile_size = make_multiple_16(tile_size)
    overlap = make_multiple_16(overlap)
    
    # If image is small enough, process without tiling
    if w <= tile_size and h <= tile_size:
        # Ensure dimensions are divisible by 16
        new_w = make_multiple_16(w)
        new_h = make_multiple_16(h)
        
        if new_w != w or new_h != h:
            padded_image = Image.new('RGB', (new_w, new_h))
            padded_image.paste(image, (0, 0))
        else:
            padded_image = image
        
        result = pipe(
            prompt=prompt,
            image=padded_image,
            strength=strength,
            num_inference_steps=steps,
            guidance_scale=guidance,
            height=new_h,
            width=new_w,
            generator=generator,
        ).images[0]
        
        # Crop back to original size if padded
        if new_w != w or new_h != h:
            result = result.crop((0, 0, w, h))
        
        return result
    
    # Process with tiling for large images
    output = Image.new('RGB', (w, h))
    
    # Calculate tile positions
    tiles = []
    for y in range(0, h, tile_size - overlap):
        for x in range(0, w, tile_size - overlap):
            tile_w = min(tile_size, w - x)
            tile_h = min(tile_size, h - y)
            
            # Ensure tile dimensions are divisible by 16
            tile_w_padded = make_multiple_16(tile_w)
            tile_h_padded = make_multiple_16(tile_h)
            
            tiles.append({
                'x': x,
                'y': y,
                'w': tile_w,
                'h': tile_h,
                'w_padded': tile_w_padded,
                'h_padded': tile_h_padded,
                'edge_x': x > 0,
                'edge_y': y > 0
            })
    
    # Process each tile
    for i, tile_info in enumerate(tiles):
        print(f"Processing tile {i+1}/{len(tiles)}...")
        
        # Extract tile from image
        tile = image.crop((
            tile_info['x'], 
            tile_info['y'], 
            tile_info['x'] + tile_info['w'], 
            tile_info['y'] + tile_info['h']
        ))
        
        # Pad if necessary
        if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
            padded_tile = Image.new('RGB', (tile_info['w_padded'], tile_info['h_padded']))
            padded_tile.paste(tile, (0, 0))
            tile = padded_tile
        
        # Process tile with FLUX
        try:
            gen_tile = pipe(
                prompt=prompt,
                image=tile,
                strength=strength,
                num_inference_steps=steps,
                guidance_scale=guidance,
                height=tile_info['h_padded'],
                width=tile_info['w_padded'],
                generator=generator,
            ).images[0]
            
            # Crop back to original tile size if padded
            if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
                gen_tile = gen_tile.crop((0, 0, tile_info['w'], tile_info['h']))
            
            # Create blend mask if needed
            if overlap > 0 and (tile_info['edge_x'] or tile_info['edge_y']):
                mask = create_blend_mask(
                    tile_info['w'], 
                    tile_info['h'], 
                    overlap,
                    tile_info['edge_x'],
                    tile_info['edge_y']
                )
                
                # Composite with blending
                output.paste(gen_tile, (tile_info['x'], tile_info['y']), mask)
            else:
                # Direct paste for first tile or no overlap
                output.paste(gen_tile, (tile_info['x'], tile_info['y']))
                
        except Exception as e:
            print(f"Error processing tile: {e}")
            # Fallback: paste original tile
            output.paste(tile, (tile_info['x'], tile_info['y']))
    
    return output


@spaces.GPU(duration=120)
def enhance_image(
    image_input,
    image_url,
    seed,
    randomize_seed,
    num_inference_steps,
    upscale_factor,
    denoising_strength,
    use_generated_caption,
    custom_prompt,
    progress=gr.Progress(track_tqdm=True),
):
    """Main enhancement function"""
    try:
        # Move models to GPU and convert to appropriate dtype
        pipe.to("cuda")
        pipe.to(torch.bfloat16)
        
        florence_model.to("cuda")
        florence_model.to(torch.float16)
        
        # Handle image input
        if image_input is not None:
            input_image = image_input
        elif image_url:
            input_image = load_image_from_url(image_url)
        else:
            raise gr.Error("Please provide an image (upload or URL)")
        
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        true_input_image = input_image
        
        # Process input image
        input_image, w_original, h_original, was_resized = process_input(
            input_image, upscale_factor
        )
        
        # Generate caption if requested
        if use_generated_caption:
            gr.Info("πŸ” Generating image caption...")
            generated_caption = generate_caption(input_image)
            prompt = generated_caption
            print(f"Generated caption: {prompt}")
        else:
            prompt = custom_prompt if custom_prompt.strip() else ""
        
        generator = torch.Generator(device="cuda").manual_seed(seed)
        
        gr.Info("πŸš€ Upscaling image...")
        
        # Initial upscale
        if USE_ESRGAN and upscale_factor == 4:
            if torch.cuda.is_available():
                esrgan_model.to("cuda")
            control_image = esrgan_upscale(input_image, upscale_factor)
            if torch.cuda.is_available():
                esrgan_model.to("cpu")
        else:
            w, h = input_image.size
            control_image = input_image.resize(
                (w * upscale_factor, h * upscale_factor), 
                resample=Image.LANCZOS
            )
        
        # Tiled Flux Img2Img for refinement
        image = tiled_flux_img2img(
            pipe,
            prompt,
            control_image,
            denoising_strength,
            num_inference_steps,
            1.0,  # guidance_scale fixed to 1.0
            generator,
            tile_size=1024,
            overlap=64
        )
        
        if was_resized:
            gr.Info(f"πŸ“ Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
            image = image.resize(
                (w_original * upscale_factor, h_original * upscale_factor), 
                resample=Image.LANCZOS
            )
        
        # Resize input image to match output size for slider alignment
        resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
        
        # Move models back to CPU to release GPU
        pipe.to("cpu")
        florence_model.to("cpu")
        torch.cuda.empty_cache()
        
        return [resized_input, image]
        
    except Exception as e:
        # Ensure models are moved back to CPU even on error
        pipe.to("cpu")
        florence_model.to("cpu")
        torch.cuda.empty_cache()
        raise gr.Error(f"Enhancement failed: {str(e)}")


# Create Gradio interface
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Florence-2 + FLUX") as demo:
    gr.HTML(f"""
    <div class="main-header">
        <h1>🎨 AI Image Upscaler</h1>
        <p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
        <p>Currently running on <strong>{power_device}</strong></p>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>πŸ“€ Input</h3>")
            
            with gr.Tabs():
                with gr.TabItem("πŸ“ Upload Image"):
                    input_image = gr.Image(
                        label="Upload Image",
                        type="pil",
                        height=200
                    )
                
                with gr.TabItem("πŸ”— Image URL"):
                    image_url = gr.Textbox(
                        label="Image URL",
                        placeholder="https://example.com/image.jpg",
                        value=""
                    )
            
            gr.HTML("<h3>πŸŽ›οΈ Caption Settings</h3>")
            
            use_generated_caption = gr.Checkbox(
                label="Use AI-generated caption (Florence-2)",
                value=True,
                info="Generate detailed caption automatically"
            )
            
            custom_prompt = gr.Textbox(
                label="Custom Prompt (optional)",
                placeholder="Enter custom prompt or leave empty for generated caption",
                lines=2
            )
            
            gr.HTML("<h3>βš™οΈ Upscaling Settings</h3>")
            
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=2,
                info="How much to upscale the image"
            )
            
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=8,
                maximum=50,
                step=1,
                value=25,
                info="More steps = better quality but slower"
            )
            
            denoising_strength = gr.Slider(
                label="Denoising Strength",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.3,
                info="Controls how much the image is transformed"
            )
            
            with gr.Row():
                randomize_seed = gr.Checkbox(
                    label="Randomize seed",
                    value=True
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                    interactive=True
                )
            
            enhance_btn = gr.Button(
                "πŸš€ Upscale Image",
                variant="primary",
                size="lg"
            )

        with gr.Column(scale=2):
            gr.HTML("<h3>πŸ“Š Results</h3>")
            
            result_slider = ImageSlider(
                type="pil",
                interactive=False,
                height=600,
                elem_id="result_slider",
                label=None
            )

    # Event handler
    enhance_btn.click(
        fn=enhance_image,
        inputs=[
            input_image,
            image_url,
            seed,
            randomize_seed,
            num_inference_steps,
            upscale_factor,
            denoising_strength,
            use_generated_caption,
            custom_prompt,
        ],
        outputs=[result_slider]
    )
    
    gr.HTML("""
    <div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
        <p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
    </div>
    """)

if __name__ == "__main__":
    demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)