Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,288 Bytes
b7cfbcf c1ad781 b7cfbcf 8365163 bda5b3f 597b21e 58d1893 082dbe6 597b21e 082dbe6 58d1893 597b21e bda5b3f 597b21e 58d1893 597b21e 8365163 597b21e 40a4e69 597b21e b7cfbcf 597b21e b7cfbcf a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e c84d7da 597b21e b7cfbcf 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e a1ef78c 597b21e bda5b3f 597b21e bda5b3f 597b21e bda5b3f 597b21e a1ef78c 597b21e c1ad781 597b21e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import warnings
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from diffusers import FluxImg2ImgPipeline
import random
import numpy as np
import os
import spaces
try:
import basicsr
# Assume basicsr interpolation setup
interpolation = "basicsr" # Placeholder for actual basicsr usage
except ImportError:
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
interpolation = Image.LANCZOS
# Initialize models
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load FLUX img2img pipeline directly to avoid auto_pipeline issues
pipe = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
pipe.enable_vae_tiling() # To help with memory for large images
# Initialize Florence model with float32 to avoid dtype mismatch
florence_model = AutoModelForCausalLM.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True,
torch_dtype=torch.float32
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
'microsoft/Florence-2-large',
trust_remote_code=True
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Florence caption function
@spaces.GPU
def florence_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
return parsed_answer["<DETAILED_CAPTION>"]
# Tiled FLUX img2img function with fix for small dimensions and overlap
def tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale, tile_size=512, overlap=64):
width, height = image.size
# Resize to multiple of 16 to avoid dimension warnings
width = (width // 16) * 16 if width >= 16 else 16
height = (height // 16) * 16 if height >= 16 else 16
if width != image.size[0] or height != image.size[1]:
image = image.resize((width, height), resample=interpolation)
result = Image.new('RGB', (width, height))
stride = tile_size - overlap
# For simplicity, tile in both directions, but handle small sizes
for y in range(0, height, stride):
for x in range(0, width, stride):
tile_left = x
tile_top = y
tile_right = min(x + tile_size, width)
tile_bottom = min(y + tile_size, height)
tile = image.crop((tile_left, tile_top, tile_right, tile_bottom))
# Skip if tile is too small
if tile.width < 16 or tile.height < 16:
continue
# Generate with img2img
generated_tile = pipe(
prompt,
image=tile,
strength=strength,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images[0]
generated_tile = generated_tile.resize(tile.size) # Ensure size match
# Paste without blend if first tile
if x == 0 and y == 0:
result.paste(generated_tile, (tile_left, tile_top))
continue
# Blend with previous if overlap
if y > 0: # Vertical blend
effective_overlap = min(overlap, tile_bottom - tile_top, result.crop((tile_left, tile_top - overlap, tile_right, tile_top)).height)
if effective_overlap > 0:
mask = Image.new('L', (tile_right - tile_left, effective_overlap))
for i in range(mask.width):
for j in range(mask.height):
# Fixed: use effective_overlap for division and range
mask.putpixel((i, j), int(255 * (j / (effective_overlap - 1 if effective_overlap > 1 else 1))))
# Blend the top part of the tile with the bottom of the previous
blend_region = Image.composite(
generated_tile.crop((0, 0, mask.width, mask.height)),
result.crop((tile_left, tile_top, tile_right, tile_top + mask.height)),
mask
)
result.paste(blend_region, (tile_left, tile_top))
# Paste the non-overlap part
result.paste(generated_tile.crop((0, effective_overlap, generated_tile.width, generated_tile.height)), (tile_left, tile_top + effective_overlap))
else:
result.paste(generated_tile, (tile_left, tile_top))
# Similar for horizontal blend (if x > 0), implement analogously
if x > 0: # Horizontal blend
# Similar logic, but for left overlap, gradient horizontal
effective_overlap_h = min(overlap, tile_right - tile_left)
if effective_overlap_h > 0:
mask_h = Image.new('L', (effective_overlap_h, tile_bottom - tile_top))
for i in range(mask_h.width):
for j in range(mask_h.height):
mask_h.putpixel((i, j), int(255 * (i / (effective_overlap_h - 1 if effective_overlap_h > 1 else 1))))
# Blend left part
blend_region_h = Image.composite(
generated_tile.crop((0, 0, mask_h.width, mask_h.height)),
result.crop((tile_left, tile_top, tile_left + mask_h.width, tile_bottom)),
mask_h
)
result.paste(blend_region_h, (tile_left, tile_top))
# Paste non-overlap
result.paste(generated_tile.crop((effective_overlap_h, 0, generated_tile.width, generated_tile.height)), (tile_left + effective_overlap_h, tile_top))
else:
result.paste(generated_tile, (tile_left, tile_top))
return result
# Main enhance function
@spaces.GPU(duration=190)
def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength, progress=gr.Progress(track_tqdm=True)):
prompt = text_prompt
if image is not None:
prompt = florence_caption(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Use tiled if large, else direct
if image and (image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE):
output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
else:
output_image = pipe(
prompt,
image=image,
generator=generator,
num_inference_steps=num_inference_steps,
width=width if image is None else None,
height=height if image is None else None,
guidance_scale=guidance_scale,
strength=strength if image is not None else 1.0 # For text2img, strength=1.0
).images[0]
return output_image, prompt, seed
# Gradio interface
title = "<h1 align='center'>FLUX Image Enhancer with Florence-2 Captioner</h1>"
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
text_prompt = gr.Textbox(label="Text Prompt (if no image)")
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.8)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, value=5.0)
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
seed = gr.Number(value=42, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Width")
height = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Height")
submit = gr.Button("Enhance")
with gr.Column():
output_image = gr.Image(label="Enhanced Image")
output_prompt = gr.Textbox(label="Generated Prompt")
output_seed = gr.Number(label="Used Seed")
submit.click(
enhance_image,
inputs=[input_image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength],
outputs=[output_image, output_prompt, output_seed]
)
print("✅ All models loaded successfully!")
demo.launch(server_port=7860, server_name="0.0.0.0") |