File size: 16,994 Bytes
1a431a3
93af3e2
b7cfbcf
1a431a3
c1ad781
597b21e
 
93af3e2
 
 
 
 
 
80d001c
58d1893
1a431a3
 
 
 
 
 
 
 
597b21e
93af3e2
 
 
 
 
 
 
 
 
 
597b21e
1a431a3
 
 
 
93af3e2
 
 
a49f337
1a431a3
b0a9f3e
 
51b5fb9
 
 
 
 
1a431a3
 
 
 
 
93af3e2
1a431a3
b0a9f3e
1a431a3
 
 
 
 
 
 
 
 
353e9dc
 
 
 
 
1a431a3
 
93af3e2
1a431a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49f337
1a431a3
 
 
 
 
 
 
 
 
 
 
 
 
 
51b5fb9
 
1a431a3
93af3e2
857d418
 
 
 
 
1a431a3
 
 
 
 
 
 
857d418
 
1a431a3
 
93af3e2
857d418
 
f28b6d8
1a431a3
 
 
 
 
 
7d32287
 
1a431a3
7d32287
1a431a3
 
 
 
7d32287
1a431a3
 
 
 
 
 
 
 
 
 
 
93af3e2
1a431a3
 
93af3e2
 
 
9047ade
1a431a3
 
80d001c
93af3e2
 
a49f337
d45f4bc
 
 
 
 
 
 
 
fd3cd81
d45f4bc
fd3cd81
d45f4bc
 
80d001c
068045e
1eb4eee
d45f4bc
 
 
353e9dc
5720168
353e9dc
d45f4bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3cd81
d45f4bc
fd3cd81
d45f4bc
 
80d001c
068045e
1eb4eee
d45f4bc
 
 
1a431a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45f4bc
1a431a3
 
 
 
 
 
 
 
 
 
 
 
51b5fb9
 
 
 
 
 
 
1a431a3
 
 
 
 
 
 
353e9dc
1a431a3
80d001c
1a431a3
 
 
51b5fb9
 
 
 
 
1a431a3
51b5fb9
 
1a431a3
 
 
 
d45f4bc
 
 
 
 
1a431a3
 
93af3e2
 
a49f337
d45f4bc
a49f337
93af3e2
1a431a3
d45f4bc
1a431a3
93af3e2
1a431a3
 
93af3e2
 
1a431a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d45f4bc
a1ef78c
1a431a3
 
d45f4bc
93af3e2
 
a1ef78c
1a431a3
 
9047ade
1a431a3
 
9047ade
 
1a431a3
 
9047ade
 
 
1a431a3
fd3cd81
1a431a3
9047ade
fd3cd81
 
9047ade
 
 
1a431a3
 
 
9047ade
1a431a3
 
9047ade
80d001c
 
 
 
 
 
 
 
 
9047ade
 
 
 
 
a49f337
1a431a3
9047ade
1a431a3
 
 
 
 
93af3e2
 
a49f337
1a431a3
a49f337
 
 
1a431a3
 
 
 
93af3e2
 
1a431a3
 
 
 
93af3e2
1a431a3
a49f337
93af3e2
 
 
a49f337
1a431a3
a49f337
 
 
9047ade
1a431a3
 
80d001c
93af3e2
1a431a3
93af3e2
a1ef78c
93af3e2
1a431a3
fd3cd81
93af3e2
 
1a431a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ad781
93af3e2
7d32287
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxImg2ImgPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
from transformers import T5TokenizerFast

# For ESRGAN (requires pip install basicsr gfpgan)
try:
    from basicsr.archs.rrdbnet_arch import RRDBNet
    from basicsr.utils import img2tensor, tensor2img
    USE_ESRGAN = True
except ImportError:
    USE_ESRGAN = False
    warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")

css = """
#col-container {
    margin: 0 auto;
    max-width: 800px;
}
.main-header {
    text-align: center;
    margin-bottom: 2rem;
}
"""

# Device setup - Default to CPU, let runtime handle GPU
power_device = "ZeroGPU"
device = "cpu"

# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")

MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192  # Increased for tiling support


def make_divisible_by_16(size):
    """Adjust size to nearest multiple of 16, stretching if necessary"""
    return ((size // 16) * 16) if (size % 16) < 8 else ((size // 16 + 1) * 16)


def process_input(input_image, upscale_factor):
    """Process input image and handle size constraints"""
    w, h = input_image.size
    w_original, h_original = w, h
    aspect_ratio = w / h

    was_resized = False

    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
        )
        gr.Info(
            f"Requested output image is too large. Resizing input to fit within pixel budget."
        )
        target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
        scale = (target_input_pixels / (w * h)) ** 0.5
        new_w = int(w * scale) // 16 * 16  # Ensure divisible by 16 for Flux compatibility
        new_h = int(h * scale) // 16 * 16
        if new_w == 0 or new_h == 0:
            new_w = max(16, new_w)
            new_h = max(16, new_h)
        input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
        was_resized = True

    return input_image, w_original, h_original, was_resized


def load_image_from_url(url):
    """Load image from URL"""
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        return Image.open(response.raw)
    except Exception as e:
        raise gr.Error(f"Failed to load image from URL: {e}")


def esrgan_upscale(image, scale=4):
    if not USE_ESRGAN:
        return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
    img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
    with torch.no_grad():
        output = esrgan_model(img.unsqueeze(0)).squeeze()
    output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
    return Image.fromarray(output_img)


def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=32):
    """Tiled Img2Img to mimic Ultimate SD Upscaler tiling"""
    w, h = image.size
    output = image.copy()  # Start with the control image

    for x in range(0, w, tile_size - overlap):
        for y in range(0, h, tile_size - overlap):
            tile_w = min(tile_size, w - x)
            tile_h = min(tile_size, h - y)
            if tile_h < 16 or tile_w < 16:  # Skip tiny tiles
                continue
            tile = image.crop((x, y, x + tile_w, y + tile_h))

            # Force tile to div by 16
            new_tile_w = make_divisible_by_16(tile_w)
            new_tile_h = make_divisible_by_16(tile_h)
            tile = tile.resize((new_tile_w, new_tile_h), resample=Image.LANCZOS)

            # Run Flux on tile
            gen_tile = pipe(
                prompt=prompt,
                image=tile,
                strength=strength,
                num_inference_steps=steps,
                guidance_scale=guidance,
                height=new_tile_h,
                width=new_tile_w,
                generator=generator,
            ).images[0]

            # Resize gen_tile back to original tile dimensions
            gen_tile = gen_tile.resize((tile_w, tile_h), resample=Image.LANCZOS)

            # Paste with blending if overlap
            if overlap > 0:
                paste_box = (x, y, x + tile_w, y + tile_h)
                if x > 0 or y > 0:
                    # Simple linear blend on overlaps
                    mask = Image.new('L', (tile_w, tile_h), 255)
                    effective_overlap_x = min(overlap, tile_w)
                    effective_overlap_y = min(overlap, tile_h)
                    if x > 0:
                        for i in range(effective_overlap_x):
                            for j in range(tile_h):
                                mask.putpixel((i, j), int(255 * (i / overlap)))
                    if y > 0:
                        for i in range(tile_w):
                            for j in range(effective_overlap_y):
                                mask.putpixel((i, j), int(255 * (j / overlap)))
                    output.paste(gen_tile, paste_box, mask)
                else:
                    output.paste(gen_tile, paste_box)
            else:
                output.paste(gen_tile, (x, y))

    return output


@spaces.GPU(duration=120)
def enhance_image(
    image_input,
    image_url,
    seed,
    randomize_seed,
    num_inference_steps,
    upscale_factor,
    denoising_strength,
    custom_prompt,
    tile_size,
    progress=gr.Progress(track_tqdm=True),
):
    """Main enhancement function"""
    # Lazy loading of models
    global pipe, esrgan_model
    if 'pipe' not in globals():
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            dtype = torch.bfloat16 if device == "cuda" else torch.float32

            print(f"πŸ“₯ Loading FLUX Img2Img on {device}...")
            tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="tokenizer_2", token=huggingface_token)
            pipe = FluxImg2ImgPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                torch_dtype=dtype,
                low_cpu_mem_usage=True,
                device_map="balanced",
                tokenizer_2=tokenizer_2,
                token=huggingface_token
            )
            pipe.enable_vae_tiling()
            pipe.enable_vae_slicing()
            if device == "cuda":
                pipe.reset_device_map()
                pipe.enable_model_cpu_offload()

            if USE_ESRGAN:
                esrgan_path = "4x-UltraSharp.pth"
                if not os.path.exists(esrgan_path):
                    url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
                    with open(esrgan_path, "wb") as f:
                        f.write(requests.get(url).content)
                esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
                state_dict = torch.load(esrgan_path)['params_ema']
                esrgan_model.load_state_dict(state_dict)
                esrgan_model.eval()
                esrgan_model.to(device)

            print("βœ… Models loaded successfully!")
        except Exception as e:
            print(f"Model loading error: {e}, falling back to CPU")
            device = "cpu"
            dtype = torch.float32
            # Reload on CPU if needed
            tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="tokenizer_2", token=huggingface_token)
            pipe = FluxImg2ImgPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                torch_dtype=dtype,
                low_cpu_mem_usage=True,
                device_map=None,
                tokenizer_2=tokenizer_2,
                token=huggingface_token
            )
            pipe.enable_vae_tiling()
            pipe.enable_vae_slicing()

    # Handle image input
    if image_input is not None:
        input_image = image_input
    elif image_url:
        input_image = load_image_from_url(image_url)
    else:
        raise gr.Error("Please provide an image (upload or URL)")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    true_input_image = input_image
    
    # Process input image
    input_image, w_original, h_original, was_resized = process_input(
        input_image, upscale_factor
    )

    prompt = custom_prompt if custom_prompt.strip() else ""

    generator = torch.Generator(device=device).manual_seed(seed)

    gr.Info("πŸš€ Upscaling image...")

    # Initial upscale
    if USE_ESRGAN and upscale_factor == 4:
        control_image = esrgan_upscale(input_image, upscale_factor)
    else:
        w, h = input_image.size
        control_image = input_image.resize((w * upscale_factor, h * upscale_factor), resample=Image.LANCZOS)

    # Resize control_image to divisible by 16 (stretching)
    control_w, control_h = control_image.size
    new_control_w = make_divisible_by_16(control_w)
    new_control_h = make_divisible_by_16(control_h)
    if (new_control_w, new_control_h) != (control_w, control_h):
        control_image = control_image.resize((new_control_w, new_control_h), resample=Image.LANCZOS)

    # Tiled Flux Img2Img for refinement
    image = tiled_flux_img2img(
        pipe,
        prompt,
        control_image,
        denoising_strength,
        num_inference_steps,
        3.5,  # Updated guidance_scale to match workflow (3.5)
        generator,
        tile_size=tile_size,
        overlap=32
    )

    # Resize back to original target size if stretched
    target_w, target_h = w_original * upscale_factor, h_original * upscale_factor
    if image.size != (target_w, target_h):
        image = image.resize((target_w, target_h), resample=Image.LANCZOS)

    if was_resized:
        gr.Info(f"πŸ“ Resizing output to target size: {target_w}x{target_h}")
        image = image.resize((target_w, target_h), resample=Image.LANCZOS)
    
    # Resize input image to match output size for slider alignment
    resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
    
    # Move back to CPU to release GPU if possible
    if device == "cuda":
        pipe.to("cpu")
        if USE_ESRGAN:
            esrgan_model.to("cpu")
    
    return [resized_input, image]


# Create Gradio interface
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - FLUX") as demo:
    gr.HTML("""
    <div class="main-header">
        <h1>🎨 AI Image Upscaler</h1>
        <p>Upload an image or provide a URL to upscale it using FLUX upscaling</p>
        <p>Currently running on <strong>{}</strong></p>
    </div>
    """.format(power_device))

    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>πŸ“€ Input</h3>")
            
            with gr.Tabs():
                with gr.TabItem("πŸ“ Upload Image"):
                    input_image = gr.Image(
                        label="Upload Image",
                        type="pil",
                        height=200  # Made smaller
                    )
                
                with gr.TabItem("πŸ”— Image URL"):
                    image_url = gr.Textbox(
                        label="Image URL",
                        placeholder="https://example.com/image.jpg",
                        value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
                    )
            
            gr.HTML("<h3>πŸŽ›οΈ Prompt Settings</h3>")
            
            custom_prompt = gr.Textbox(
                label="Custom Prompt (optional)",
                placeholder="Enter custom prompt or leave empty",
                lines=2
            )
            
            gr.HTML("<h3>βš™οΈ Upscaling Settings</h3>")
            
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=2,
                info="How much to upscale the image"
            )
            
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=1,
                maximum=50,
                step=1,
                value=4,
                info="More steps = better quality but slower (default 4 for schnell)"
            )
            
            denoising_strength = gr.Slider(
                label="Denoising Strength",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
                value=0.3,
                info="Controls how much the image is transformed"
            )

            tile_size = gr.Slider(
                label="Tile Size",
                minimum=256,
                maximum=2048,
                step=64,
                value=1024,
                info="Size of tiles for processing (larger = faster but more memory)"
            )
            
            with gr.Row():
                randomize_seed = gr.Checkbox(
                    label="Randomize seed",
                    value=True
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                    interactive=True
                )
            
            enhance_btn = gr.Button(
                "πŸš€ Upscale Image",
                variant="primary",
                size="lg"
            )

        with gr.Column(scale=2):  # Larger scale for results
            gr.HTML("<h3>πŸ“Š Results</h3>")
            
            result_slider = ImageSlider(
                type="pil",
                interactive=False,  # Disable interactivity to prevent uploads
                height=600,  # Made larger
                elem_id="result_slider",
                label=None  # Remove default label
            )

    # Event handler
    enhance_btn.click(
        fn=enhance_image,
        inputs=[
            input_image,
            image_url,
            seed,
            randomize_seed,
            num_inference_steps,
            upscale_factor,
            denoising_strength,
            custom_prompt,
            tile_size
        ],
        outputs=[result_slider]
    )
    
    gr.HTML("""
    <div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
        <p><strong>Note:</strong> This upscaler uses the Flux.1-schnell model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
    </div>
    """)
    
    # Custom CSS for slider
    gr.HTML("""
    <style>
        #result_slider .slider {
            width: 100% !important;
            max-width: inherit !important;
        }
        #result_slider img {
            object-fit: contain !important;
            width: 100% !important;
            height: auto !important;
        }
        #result_slider .gr-button-tool {
            display: none !important;
        }
        #result_slider .gr-button-undo {
            display: none !important;
        }
        #result_slider .gr-button-clear {
            display: none !important;
        }
        #result_slider .badge-container .badge {
            display: none !important;
        }
        #result_slider .badge-container::before {
            content: "Before";
            position: absolute;
            top: 10px;
            left: 10px;
            background: rgba(0,0,0,0.5);
            color: white;
            padding: 5px;
            border-radius: 5px;
            z-index: 10;
        }
        #result_slider .badge-container::after {
            content: "After";
            position: absolute;
            top: 10px;
            right: 10px;
            background: rgba(0,0,0,0.5);
            color: white;
            padding: 5px;
            border-radius: 5px;
            z-index: 10;
        }
        #result_slider .fullscreen img {
            object-fit: contain !important;
            width: 100vw !important;
            height: 100vh !important;
            position: absolute;
            top: 0;
            left: 0;
        }
    </style>
    """)
    
    # JS to set slider default position to middle
    gr.HTML("""
    <script>
        document.addEventListener('DOMContentLoaded', function() {
            const sliderInput = document.querySelector('#result_slider input[type="range"]');
            if (sliderInput) {
                sliderInput.value = 50;
                sliderInput.dispatchEvent(new Event('input'));
            }
        });
    </script>
    """)

if __name__ == "__main__":
    demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)