fluxhdupscaler / app.py
comrender's picture
Update app.py
b0a9f3e verified
raw
history blame
19.1 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxImg2ImgPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
# For ESRGAN (optional - will work without it)
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils import img2tensor, tensor2img
USE_ESRGAN = True
except ImportError:
USE_ESRGAN = False
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
# Device setup
power_device = "ZeroGPU"
device = "cpu" # Start on CPU, will move to GPU when needed
# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")
# Download FLUX model
print("πŸ“₯ Downloading FLUX model...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*.gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load Florence-2 model for image captioning on CPU
print("πŸ“₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch.float32, # Use float32 on CPU to avoid dtype issues
trust_remote_code=True,
attn_implementation="eager"
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
# Load FLUX Img2Img pipeline on CPU
print("πŸ“₯ Loading FLUX Img2Img...")
pipe = FluxImg2ImgPipeline.from_pretrained(
model_path,
torch_dtype=torch.float32 # Start with float32 on CPU
)
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()
print("βœ… All models loaded successfully!")
# Download ESRGAN model if using
if USE_ESRGAN:
try:
esrgan_path = "4x-UltraSharp.pth"
if not os.path.exists(esrgan_path):
url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
print("πŸ“₯ Downloading ESRGAN model...")
with open(esrgan_path, "wb") as f:
f.write(requests.get(url).content)
esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
state_dict = torch.load(esrgan_path, map_location='cpu')['params_ema']
esrgan_model.load_state_dict(state_dict)
esrgan_model.eval()
print("βœ… ESRGAN model loaded!")
except Exception as e:
print(f"Failed to load ESRGAN: {e}")
USE_ESRGAN = False
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 8192 * 8192
def make_multiple_16(n):
"""Round up to nearest multiple of 16"""
return ((n + 15) // 16) * 16
def generate_caption(image):
"""Generate detailed caption using Florence-2"""
try:
# Ensure model is on the correct device with correct dtype
if florence_model.device.type == "cuda":
florence_model.to(torch.float16)
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt
inputs = florence_processor(
text=prompt,
images=image,
return_tensors="pt"
).to(florence_model.device)
# Ensure dtype consistency
if florence_model.device.type == "cuda":
if hasattr(inputs, "pixel_values"):
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=True,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
caption = parsed_answer[task_prompt]
return caption
except Exception as e:
print(f"Caption generation failed: {e}")
return "a high quality detailed image"
def process_input(input_image, upscale_factor):
"""Process input image and handle size constraints"""
w, h = input_image.size
w_original, h_original = w, h
was_resized = False
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
)
gr.Info(
f"Requested output image is too large. Resizing input to fit within pixel budget."
)
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
scale = (target_input_pixels / (w * h)) ** 0.5
new_w = make_multiple_16(int(w * scale))
new_h = make_multiple_16(int(h * scale))
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
was_resized = True
return input_image, w_original, h_original, was_resized
def load_image_from_url(url):
"""Load image from URL"""
try:
response = requests.get(url, stream=True)
response.raise_for_status()
return Image.open(response.raw)
except Exception as e:
raise gr.Error(f"Failed to load image from URL: {e}")
def esrgan_upscale(image, scale=4):
"""Upscale image using ESRGAN or fallback to LANCZOS"""
if not USE_ESRGAN:
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
try:
img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
with torch.no_grad():
# Move model to same device as image tensor
if torch.cuda.is_available():
esrgan_model.to("cuda")
img = img.to("cuda")
output = esrgan_model(img.unsqueeze(0)).squeeze()
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
return Image.fromarray(output_img)
except Exception as e:
print(f"ESRGAN upscale failed: {e}, falling back to LANCZOS")
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
def create_blend_mask(width, height, overlap, edge_x, edge_y):
"""Create a gradient blend mask for smooth tile transitions"""
mask = Image.new('L', (width, height), 255)
pixels = mask.load()
# Horizontal blend (left edge)
if edge_x and overlap > 0:
for x in range(min(overlap, width)):
alpha = x / overlap
for y in range(height):
pixels[x, y] = int(255 * alpha)
# Vertical blend (top edge)
if edge_y and overlap > 0:
for y in range(min(overlap, height)):
alpha = y / overlap
for x in range(width):
# Combine with existing alpha if both edges
existing = pixels[x, y] / 255.0
combined = min(existing, alpha)
pixels[x, y] = int(255 * combined)
return mask
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=64):
"""Tiled Img2Img to handle large images"""
w, h = image.size
# Ensure tile_size is divisible by 16
tile_size = make_multiple_16(tile_size)
overlap = make_multiple_16(overlap)
# If image is small enough, process without tiling
if w <= tile_size and h <= tile_size:
# Ensure dimensions are divisible by 16
new_w = make_multiple_16(w)
new_h = make_multiple_16(h)
if new_w != w or new_h != h:
padded_image = Image.new('RGB', (new_w, new_h))
padded_image.paste(image, (0, 0))
else:
padded_image = image
result = pipe(
prompt=prompt,
image=padded_image,
strength=strength,
num_inference_steps=steps,
guidance_scale=guidance,
height=new_h,
width=new_w,
generator=generator,
).images[0]
# Crop back to original size if padded
if new_w != w or new_h != h:
result = result.crop((0, 0, w, h))
return result
# Process with tiling for large images
output = Image.new('RGB', (w, h))
# Calculate tile positions
tiles = []
for y in range(0, h, tile_size - overlap):
for x in range(0, w, tile_size - overlap):
tile_w = min(tile_size, w - x)
tile_h = min(tile_size, h - y)
# Ensure tile dimensions are divisible by 16
tile_w_padded = make_multiple_16(tile_w)
tile_h_padded = make_multiple_16(tile_h)
tiles.append({
'x': x,
'y': y,
'w': tile_w,
'h': tile_h,
'w_padded': tile_w_padded,
'h_padded': tile_h_padded,
'edge_x': x > 0,
'edge_y': y > 0
})
# Process each tile
for i, tile_info in enumerate(tiles):
print(f"Processing tile {i+1}/{len(tiles)}...")
# Extract tile from image
tile = image.crop((
tile_info['x'],
tile_info['y'],
tile_info['x'] + tile_info['w'],
tile_info['y'] + tile_info['h']
))
# Pad if necessary
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
padded_tile = Image.new('RGB', (tile_info['w_padded'], tile_info['h_padded']))
padded_tile.paste(tile, (0, 0))
tile = padded_tile
# Process tile with FLUX
try:
gen_tile = pipe(
prompt=prompt,
image=tile,
strength=strength,
num_inference_steps=steps,
guidance_scale=guidance,
height=tile_info['h_padded'],
width=tile_info['w_padded'],
generator=generator,
).images[0]
# Crop back to original tile size if padded
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
gen_tile = gen_tile.crop((0, 0, tile_info['w'], tile_info['h']))
# Create blend mask if needed
if overlap > 0 and (tile_info['edge_x'] or tile_info['edge_y']):
mask = create_blend_mask(
tile_info['w'],
tile_info['h'],
overlap,
tile_info['edge_x'],
tile_info['edge_y']
)
# Composite with blending
output.paste(gen_tile, (tile_info['x'], tile_info['y']), mask)
else:
# Direct paste for first tile or no overlap
output.paste(gen_tile, (tile_info['x'], tile_info['y']))
except Exception as e:
print(f"Error processing tile: {e}")
# Fallback: paste original tile
output.paste(tile, (tile_info['x'], tile_info['y']))
return output
@spaces.GPU(duration=120)
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
denoising_strength,
use_generated_caption,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
"""Main enhancement function"""
try:
# Move models to GPU and convert to appropriate dtype
pipe.to("cuda")
pipe.to(torch.bfloat16)
florence_model.to("cuda")
florence_model.to(torch.float16)
# Handle image input
if image_input is not None:
input_image = image_input
elif image_url:
input_image = load_image_from_url(image_url)
else:
raise gr.Error("Please provide an image (upload or URL)")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
true_input_image = input_image
# Process input image
input_image, w_original, h_original, was_resized = process_input(
input_image, upscale_factor
)
# Generate caption if requested
if use_generated_caption:
gr.Info("πŸ” Generating image caption...")
generated_caption = generate_caption(input_image)
prompt = generated_caption
print(f"Generated caption: {prompt}")
else:
prompt = custom_prompt if custom_prompt.strip() else ""
generator = torch.Generator(device="cuda").manual_seed(seed)
gr.Info("πŸš€ Upscaling image...")
# Initial upscale
if USE_ESRGAN and upscale_factor == 4:
if torch.cuda.is_available():
esrgan_model.to("cuda")
control_image = esrgan_upscale(input_image, upscale_factor)
if torch.cuda.is_available():
esrgan_model.to("cpu")
else:
w, h = input_image.size
control_image = input_image.resize(
(w * upscale_factor, h * upscale_factor),
resample=Image.LANCZOS
)
# Tiled Flux Img2Img for refinement
image = tiled_flux_img2img(
pipe,
prompt,
control_image,
denoising_strength,
num_inference_steps,
1.0, # guidance_scale fixed to 1.0
generator,
tile_size=1024,
overlap=64
)
if was_resized:
gr.Info(f"πŸ“ Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
image = image.resize(
(w_original * upscale_factor, h_original * upscale_factor),
resample=Image.LANCZOS
)
# Resize input image to match output size for slider alignment
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
# Move models back to CPU to release GPU
pipe.to("cpu")
florence_model.to("cpu")
torch.cuda.empty_cache()
return [resized_input, image]
except Exception as e:
# Ensure models are moved back to CPU even on error
pipe.to("cpu")
florence_model.to("cpu")
torch.cuda.empty_cache()
raise gr.Error(f"Enhancement failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Florence-2 + FLUX") as demo:
gr.HTML(f"""
<div class="main-header">
<h1>🎨 AI Image Upscaler</h1>
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
<p>Currently running on <strong>{power_device}</strong></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“€ Input</h3>")
with gr.Tabs():
with gr.TabItem("πŸ“ Upload Image"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=200
)
with gr.TabItem("πŸ”— Image URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg",
value=""
)
gr.HTML("<h3>πŸŽ›οΈ Caption Settings</h3>")
use_generated_caption = gr.Checkbox(
label="Use AI-generated caption (Florence-2)",
value=True,
info="Generate detailed caption automatically"
)
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Enter custom prompt or leave empty for generated caption",
lines=2
)
gr.HTML("<h3>βš™οΈ Upscaling Settings</h3>")
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=2,
info="How much to upscale the image"
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=25,
info="More steps = better quality but slower"
)
denoising_strength = gr.Slider(
label="Denoising Strength",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.3,
info="Controls how much the image is transformed"
)
with gr.Row():
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
enhance_btn = gr.Button(
"πŸš€ Upscale Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.HTML("<h3>πŸ“Š Results</h3>")
result_slider = ImageSlider(
type="pil",
interactive=False,
height=600,
elem_id="result_slider",
label=None
)
# Event handler
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
denoising_strength,
use_generated_caption,
custom_prompt,
],
outputs=[result_slider]
)
gr.HTML("""
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
</div>
""")
if __name__ == "__main__":
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)