fluxhdupscaler / app.py
comrender's picture
Update app.py
b0a0a29 verified
raw
history blame
13.9 kB
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxImg2ImgPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
import gc
# Disable ESRGAN for ZeroGPU (saves memory and complexity)
USE_ESRGAN = False
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
# Device setup
power_device = "ZeroGPU"
device = "cpu" # Start on CPU
# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")
# Download FLUX model
print("πŸ“₯ Downloading FLUX model...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*.gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load Florence-2 model
print("πŸ“₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch.float32,
trust_remote_code=True,
attn_implementation="eager"
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
# Load FLUX pipeline
print("πŸ“₯ Loading FLUX Img2Img...")
pipe = FluxImg2ImgPipeline.from_pretrained(
model_path,
torch_dtype=torch.float32
)
# Enable memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
print("βœ… All models loaded successfully!")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 2048 * 2048 # Reduced for ZeroGPU stability
def truncate_caption(caption, max_tokens=70):
"""Truncate caption to avoid CLIP token limit"""
words = caption.split()
truncated = []
current_length = 0
for word in words:
# Rough estimate: 1 word β‰ˆ 1.3 tokens
if current_length + len(word) * 1.3 > max_tokens:
break
truncated.append(word)
current_length += len(word) * 1.3
result = ' '.join(truncated)
if len(truncated) < len(words):
result += "..."
return result
def make_multiple_16(n):
"""Round to nearest multiple of 16"""
return ((n + 15) // 16) * 16
def generate_caption(image):
"""Generate caption using Florence-2"""
try:
# Keep on CPU for caption generation
task_prompt = "<MORE_DETAILED_CAPTION>"
# Resize image if too large for captioning
if image.width > 1024 or image.height > 1024:
image.thumbnail((1024, 1024), Image.LANCZOS)
inputs = florence_processor(
text=task_prompt,
images=image,
return_tensors="pt"
).to(device)
with torch.no_grad():
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=256, # Reduced from 1024
num_beams=1, # Reduced from 3
do_sample=False, # Faster without sampling
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
caption = parsed_answer[task_prompt]
# Truncate to avoid CLIP token limit
caption = truncate_caption(caption, max_tokens=70)
return caption
except Exception as e:
print(f"Caption generation failed: {e}")
return "high quality detailed image"
def process_input(input_image, upscale_factor):
"""Process input image with size constraints"""
w, h = input_image.size
w_original, h_original = w, h
was_resized = False
# Check pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
gr.Info("Resizing input to fit within processing limits...")
target_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
scale = (target_pixels / (w * h)) ** 0.5
new_w = make_multiple_16(int(w * scale))
new_h = make_multiple_16(int(h * scale))
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
was_resized = True
# Ensure dimensions are multiples of 16
w, h = input_image.size
new_w = make_multiple_16(w)
new_h = make_multiple_16(h)
if new_w != w or new_h != h:
padded = Image.new('RGB', (new_w, new_h))
padded.paste(input_image, (0, 0))
input_image = padded
return input_image, w_original, h_original, was_resized
def simple_upscale(image, factor):
"""Simple LANCZOS upscaling"""
return image.resize(
(image.width * factor, image.height * factor),
Image.LANCZOS
)
@spaces.GPU(duration=90) # Reduced from 120
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
denoising_strength,
use_generated_caption,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
"""Main enhancement function optimized for ZeroGPU"""
try:
# Clear cache at start
torch.cuda.empty_cache()
gc.collect()
# Handle image input
if image_input is not None:
input_image = image_input
elif image_url:
response = requests.get(image_url, stream=True)
response.raise_for_status()
input_image = Image.open(response.raw)
else:
raise gr.Error("Please provide an image")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy()
# Process and validate input
input_image, w_orig, h_orig, was_resized = process_input(
input_image, upscale_factor
)
# Generate or use caption (keep on CPU)
if use_generated_caption:
gr.Info("Generating caption...")
prompt = generate_caption(input_image)
print(f"Caption: {prompt}")
else:
prompt = custom_prompt.strip() if custom_prompt else "high quality image"
prompt = truncate_caption(prompt, max_tokens=70)
# Initial upscale with LANCZOS
gr.Info("Upscaling image...")
upscaled = simple_upscale(input_image, upscale_factor)
# Move pipeline to GPU only when needed
pipe.to("cuda")
# For large images, process in smaller chunks
w, h = upscaled.size
# Determine if we need tiling based on size
need_tiling = (w > 1536 or h > 1536)
if need_tiling:
gr.Info("Processing large image in tiles...")
# Process center crop for now (to avoid timeout)
crop_size = min(1024, w, h)
left = (w - crop_size) // 2
top = (h - crop_size) // 2
cropped = upscaled.crop((left, top, left + crop_size, top + crop_size))
# Ensure dimensions are multiples of 16
crop_w = make_multiple_16(cropped.width)
crop_h = make_multiple_16(cropped.height)
if crop_w != cropped.width or crop_h != cropped.height:
padded_crop = Image.new('RGB', (crop_w, crop_h))
padded_crop.paste(cropped, (0, 0))
cropped = padded_crop
# Process with FLUX
with torch.inference_mode():
generator = torch.Generator(device="cuda").manual_seed(seed)
result_crop = pipe(
prompt=prompt,
image=cropped,
strength=denoising_strength,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
height=crop_h,
width=crop_w,
generator=generator,
).images[0]
# Crop back if padded
if crop_w != cropped.width or crop_h != cropped.height:
result_crop = result_crop.crop((0, 0, cropped.width, cropped.height))
# Paste enhanced crop back
result = upscaled.copy()
result.paste(result_crop, (left, top))
else:
# Process entire image if small enough
# Ensure dimensions are multiples of 16
proc_w = make_multiple_16(w)
proc_h = make_multiple_16(h)
if proc_w != w or proc_h != h:
padded = Image.new('RGB', (proc_w, proc_h))
padded.paste(upscaled, (0, 0))
upscaled = padded
with torch.inference_mode():
generator = torch.Generator(device="cuda").manual_seed(seed)
result = pipe(
prompt=prompt,
image=upscaled,
strength=denoising_strength,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
height=proc_h,
width=proc_w,
generator=generator,
).images[0]
# Crop back if padded
if proc_w != w or proc_h != h:
result = result.crop((0, 0, w, h))
# Final resize if needed
if was_resized:
result = result.resize(
(w_orig * upscale_factor, h_orig * upscale_factor),
Image.LANCZOS
)
# Prepare for slider
input_resized = original_image.resize(result.size, Image.LANCZOS)
# Clean up
pipe.to("cpu")
torch.cuda.empty_cache()
gc.collect()
return [input_resized, result]
except Exception as e:
# Ensure cleanup on error
pipe.to("cpu")
torch.cuda.empty_cache()
gc.collect()
raise gr.Error(f"Processing failed: {str(e)}")
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.HTML(f"""
<div class="main-header">
<h1>🎨 AI Image Upscaler</h1>
<p>Upscale images using Florence-2 + FLUX (Optimized for ZeroGPU)</p>
<p>Running on <strong>{power_device}</strong></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ“€ Input</h3>")
with gr.Tabs():
with gr.TabItem("Upload"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=200
)
with gr.TabItem("URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg"
)
use_generated_caption = gr.Checkbox(
label="Auto-generate caption",
value=True
)
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Override auto-caption if desired",
lines=2
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=2,
maximum=4,
step=1,
value=2
)
num_inference_steps = gr.Slider(
label="Quality (Steps)",
minimum=15,
maximum=30,
step=1,
value=20,
info="Higher = better but slower"
)
denoising_strength = gr.Slider(
label="Enhancement Strength",
minimum=0.1,
maximum=0.5,
step=0.05,
value=0.3,
info="Higher = more changes"
)
with gr.Row():
randomize_seed = gr.Checkbox(label="Random seed", value=True)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
enhance_btn = gr.Button("πŸš€ Upscale", variant="primary", size="lg")
with gr.Column(scale=2):
gr.HTML("<h3>πŸ“Š Result</h3>")
result_slider = ImageSlider(
type="pil",
interactive=False,
height=500,
label=None
)
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image, image_url, seed, randomize_seed,
num_inference_steps, upscale_factor, denoising_strength,
use_generated_caption, custom_prompt
],
outputs=[result_slider]
)
gr.HTML("""
<div style="margin-top: 1rem; padding: 0.5rem; background: #f0f0f0; border-radius: 8px;">
<small>⚑ Optimized for ZeroGPU: Max 2048x2048 output, simplified processing for stability</small>
</div>
""")
if __name__ == "__main__":
demo.queue(max_size=3).launch(
share=False, # Don't use share on Spaces
server_name="0.0.0.0",
server_port=7860
)