Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,927 Bytes
93af3e2 b7cfbcf 93af3e2 c1ad781 597b21e 93af3e2 b0a0a29 58d1893 b0a0a29 597b21e 93af3e2 597b21e b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 b0a9f3e b0a0a29 b0a9f3e 93af3e2 58d1893 93af3e2 b0a0a29 be0c600 b0a0a29 93af3e2 b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 93af3e2 b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a9f3e 93af3e2 b0a9f3e b0a0a29 93af3e2 b0a0a29 b0a9f3e b0a0a29 93af3e2 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 b0a9f3e b0a0a29 93af3e2 b0a0a29 b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a9f3e b0a0a29 93af3e2 b7cfbcf 93af3e2 b0a0a29 93af3e2 b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 a1ef78c 93af3e2 b0a0a29 93af3e2 a1ef78c 93af3e2 b0a0a29 93af3e2 a1ef78c 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 b0a0a29 b0a9f3e b0a0a29 93af3e2 b0a9f3e b0a0a29 b0a9f3e 93af3e2 b0a0a29 93af3e2 b0a0a29 93af3e2 a1ef78c 93af3e2 b0a0a29 93af3e2 c1ad781 93af3e2 b0a0a29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxImg2ImgPipeline
from transformers import AutoProcessor, AutoModelForCausalLM
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download
import requests
import gc
# Disable ESRGAN for ZeroGPU (saves memory and complexity)
USE_ESRGAN = False
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
}
"""
# Device setup
power_device = "ZeroGPU"
device = "cpu" # Start on CPU
# Get HuggingFace token
huggingface_token = os.getenv("HF_TOKEN")
# Download FLUX model
print("π₯ Downloading FLUX model...")
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*.gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token,
)
# Load Florence-2 model
print("π₯ Loading Florence-2 model...")
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large",
torch_dtype=torch.float32,
trust_remote_code=True,
attn_implementation="eager"
).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-large",
trust_remote_code=True
)
# Load FLUX pipeline
print("π₯ Loading FLUX Img2Img...")
pipe = FluxImg2ImgPipeline.from_pretrained(
model_path,
torch_dtype=torch.float32
)
# Enable memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
print("β
All models loaded successfully!")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 2048 * 2048 # Reduced for ZeroGPU stability
def truncate_caption(caption, max_tokens=70):
"""Truncate caption to avoid CLIP token limit"""
words = caption.split()
truncated = []
current_length = 0
for word in words:
# Rough estimate: 1 word β 1.3 tokens
if current_length + len(word) * 1.3 > max_tokens:
break
truncated.append(word)
current_length += len(word) * 1.3
result = ' '.join(truncated)
if len(truncated) < len(words):
result += "..."
return result
def make_multiple_16(n):
"""Round to nearest multiple of 16"""
return ((n + 15) // 16) * 16
def generate_caption(image):
"""Generate caption using Florence-2"""
try:
# Keep on CPU for caption generation
task_prompt = "<MORE_DETAILED_CAPTION>"
# Resize image if too large for captioning
if image.width > 1024 or image.height > 1024:
image.thumbnail((1024, 1024), Image.LANCZOS)
inputs = florence_processor(
text=task_prompt,
images=image,
return_tensors="pt"
).to(device)
with torch.no_grad():
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=256, # Reduced from 1024
num_beams=1, # Reduced from 3
do_sample=False, # Faster without sampling
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
caption = parsed_answer[task_prompt]
# Truncate to avoid CLIP token limit
caption = truncate_caption(caption, max_tokens=70)
return caption
except Exception as e:
print(f"Caption generation failed: {e}")
return "high quality detailed image"
def process_input(input_image, upscale_factor):
"""Process input image with size constraints"""
w, h = input_image.size
w_original, h_original = w, h
was_resized = False
# Check pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
gr.Info("Resizing input to fit within processing limits...")
target_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
scale = (target_pixels / (w * h)) ** 0.5
new_w = make_multiple_16(int(w * scale))
new_h = make_multiple_16(int(h * scale))
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
was_resized = True
# Ensure dimensions are multiples of 16
w, h = input_image.size
new_w = make_multiple_16(w)
new_h = make_multiple_16(h)
if new_w != w or new_h != h:
padded = Image.new('RGB', (new_w, new_h))
padded.paste(input_image, (0, 0))
input_image = padded
return input_image, w_original, h_original, was_resized
def simple_upscale(image, factor):
"""Simple LANCZOS upscaling"""
return image.resize(
(image.width * factor, image.height * factor),
Image.LANCZOS
)
@spaces.GPU(duration=90) # Reduced from 120
def enhance_image(
image_input,
image_url,
seed,
randomize_seed,
num_inference_steps,
upscale_factor,
denoising_strength,
use_generated_caption,
custom_prompt,
progress=gr.Progress(track_tqdm=True),
):
"""Main enhancement function optimized for ZeroGPU"""
try:
# Clear cache at start
torch.cuda.empty_cache()
gc.collect()
# Handle image input
if image_input is not None:
input_image = image_input
elif image_url:
response = requests.get(image_url, stream=True)
response.raise_for_status()
input_image = Image.open(response.raw)
else:
raise gr.Error("Please provide an image")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy()
# Process and validate input
input_image, w_orig, h_orig, was_resized = process_input(
input_image, upscale_factor
)
# Generate or use caption (keep on CPU)
if use_generated_caption:
gr.Info("Generating caption...")
prompt = generate_caption(input_image)
print(f"Caption: {prompt}")
else:
prompt = custom_prompt.strip() if custom_prompt else "high quality image"
prompt = truncate_caption(prompt, max_tokens=70)
# Initial upscale with LANCZOS
gr.Info("Upscaling image...")
upscaled = simple_upscale(input_image, upscale_factor)
# Move pipeline to GPU only when needed
pipe.to("cuda")
# For large images, process in smaller chunks
w, h = upscaled.size
# Determine if we need tiling based on size
need_tiling = (w > 1536 or h > 1536)
if need_tiling:
gr.Info("Processing large image in tiles...")
# Process center crop for now (to avoid timeout)
crop_size = min(1024, w, h)
left = (w - crop_size) // 2
top = (h - crop_size) // 2
cropped = upscaled.crop((left, top, left + crop_size, top + crop_size))
# Ensure dimensions are multiples of 16
crop_w = make_multiple_16(cropped.width)
crop_h = make_multiple_16(cropped.height)
if crop_w != cropped.width or crop_h != cropped.height:
padded_crop = Image.new('RGB', (crop_w, crop_h))
padded_crop.paste(cropped, (0, 0))
cropped = padded_crop
# Process with FLUX
with torch.inference_mode():
generator = torch.Generator(device="cuda").manual_seed(seed)
result_crop = pipe(
prompt=prompt,
image=cropped,
strength=denoising_strength,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
height=crop_h,
width=crop_w,
generator=generator,
).images[0]
# Crop back if padded
if crop_w != cropped.width or crop_h != cropped.height:
result_crop = result_crop.crop((0, 0, cropped.width, cropped.height))
# Paste enhanced crop back
result = upscaled.copy()
result.paste(result_crop, (left, top))
else:
# Process entire image if small enough
# Ensure dimensions are multiples of 16
proc_w = make_multiple_16(w)
proc_h = make_multiple_16(h)
if proc_w != w or proc_h != h:
padded = Image.new('RGB', (proc_w, proc_h))
padded.paste(upscaled, (0, 0))
upscaled = padded
with torch.inference_mode():
generator = torch.Generator(device="cuda").manual_seed(seed)
result = pipe(
prompt=prompt,
image=upscaled,
strength=denoising_strength,
num_inference_steps=num_inference_steps,
guidance_scale=1.0,
height=proc_h,
width=proc_w,
generator=generator,
).images[0]
# Crop back if padded
if proc_w != w or proc_h != h:
result = result.crop((0, 0, w, h))
# Final resize if needed
if was_resized:
result = result.resize(
(w_orig * upscale_factor, h_orig * upscale_factor),
Image.LANCZOS
)
# Prepare for slider
input_resized = original_image.resize(result.size, Image.LANCZOS)
# Clean up
pipe.to("cpu")
torch.cuda.empty_cache()
gc.collect()
return [input_resized, result]
except Exception as e:
# Ensure cleanup on error
pipe.to("cpu")
torch.cuda.empty_cache()
gc.collect()
raise gr.Error(f"Processing failed: {str(e)}")
# Gradio Interface
with gr.Blocks(css=css) as demo:
gr.HTML(f"""
<div class="main-header">
<h1>π¨ AI Image Upscaler</h1>
<p>Upscale images using Florence-2 + FLUX (Optimized for ZeroGPU)</p>
<p>Running on <strong>{power_device}</strong></p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π€ Input</h3>")
with gr.Tabs():
with gr.TabItem("Upload"):
input_image = gr.Image(
label="Upload Image",
type="pil",
height=200
)
with gr.TabItem("URL"):
image_url = gr.Textbox(
label="Image URL",
placeholder="https://example.com/image.jpg"
)
use_generated_caption = gr.Checkbox(
label="Auto-generate caption",
value=True
)
custom_prompt = gr.Textbox(
label="Custom Prompt (optional)",
placeholder="Override auto-caption if desired",
lines=2
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=2,
maximum=4,
step=1,
value=2
)
num_inference_steps = gr.Slider(
label="Quality (Steps)",
minimum=15,
maximum=30,
step=1,
value=20,
info="Higher = better but slower"
)
denoising_strength = gr.Slider(
label="Enhancement Strength",
minimum=0.1,
maximum=0.5,
step=0.05,
value=0.3,
info="Higher = more changes"
)
with gr.Row():
randomize_seed = gr.Checkbox(label="Random seed", value=True)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
enhance_btn = gr.Button("π Upscale", variant="primary", size="lg")
with gr.Column(scale=2):
gr.HTML("<h3>π Result</h3>")
result_slider = ImageSlider(
type="pil",
interactive=False,
height=500,
label=None
)
enhance_btn.click(
fn=enhance_image,
inputs=[
input_image, image_url, seed, randomize_seed,
num_inference_steps, upscale_factor, denoising_strength,
use_generated_caption, custom_prompt
],
outputs=[result_slider]
)
gr.HTML("""
<div style="margin-top: 1rem; padding: 0.5rem; background: #f0f0f0; border-radius: 8px;">
<small>β‘ Optimized for ZeroGPU: Max 2048x2048 output, simplified processing for stability</small>
</div>
""")
if __name__ == "__main__":
demo.queue(max_size=3).launch(
share=False, # Don't use share on Spaces
server_name="0.0.0.0",
server_port=7860
) |