cyrilzakka's picture
cyrilzakka HF Staff
Create app.py
106aab5 verified
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from mcp.client.sse import sse_client
from anthropic import Anthropic
from datasets import load_dataset
import pandas as pd
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
class MCPClientWrapper:
def __init__(self):
self.session = None
self.exit_stack = None
self.anthropic = None
self.tools = []
self.dataset = None
self.validation_results = []
def set_api_key(self, api_key: str) -> str:
"""Set the Anthropic API key and initialize the client"""
if not api_key or not api_key.strip():
return "Please enter a valid Anthropic API key"
try:
self.anthropic = Anthropic(api_key=api_key.strip())
return "API key set successfully βœ…"
except Exception as e:
return f"Failed to set API key: {str(e)}"
def connect(self, server_input: str) -> str:
if not self.anthropic:
return "Please set your Anthropic API key first"
return loop.run_until_complete(self._connect(server_input))
async def _connect(self, server_input: str) -> str:
if self.exit_stack:
await self.exit_stack.aclose()
self.exit_stack = AsyncExitStack()
try:
# Check if input is a URL (starts with http:// or https://)
if server_input.startswith(('http://', 'https://')):
# Connect via SSE
read, write = await self.exit_stack.enter_async_context(
sse_client(server_input)
)
connection_type = "SSE URL"
else:
# Connect via stdio (local file)
is_python = server_input.endswith('.py')
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_input],
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
)
read, write = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
connection_type = "Local script"
self.session = await self.exit_stack.enter_async_context(
ClientSession(read, write)
)
await self.session.initialize()
response = await self.session.list_tools()
self.tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
tool_names = [tool["name"] for tool in self.tools]
return f"Connected to MCP server via {connection_type}. Available tools: {', '.join(tool_names)}"
except Exception as e:
return f"Connection failed: {str(e)}"
def load_dataset(self) -> tuple:
"""Load the TAAIC Phase1 validation dataset"""
try:
self.dataset = load_dataset("aitxchallenge/Phase1_Model_Validator", split="train")
dataset_info = f"Dataset loaded successfully! {len(self.dataset)} validation cases available."
# Create a preview of the dataset
df = pd.DataFrame(self.dataset)
preview = df.head().to_string()
return (
dataset_info,
gr.Button("πŸ” Validate", interactive=True),
gr.Textbox(value=f"Dataset Preview:\n{preview}", visible=True)
)
except Exception as e:
return (
f"Failed to load dataset: {str(e)}",
gr.Button("πŸ“₯ Load Dataset", interactive=True),
gr.Textbox(visible=False)
)
def validate_tools(self) -> str:
"""Run validation on all dataset cases"""
if not self.anthropic:
return "Please set your Anthropic API key first."
if not self.dataset:
return "Please load the dataset first."
if not self.session:
return "Please connect to an MCP server first."
return loop.run_until_complete(self._run_validation())
async def _run_validation(self) -> str:
"""Async validation runner"""
self.validation_results = []
total_cases = len(self.dataset)
passed = 0
failed = 0
for i, case in enumerate(self.dataset):
try:
# Extract test case information
query = case.get('query', case.get('question', ''))
expected_output = case.get('expected_output', case.get('expected', ''))
test_id = case.get('id', f'test_{i}')
# Run the query through the MCP tools
result = await self._validate_single_case(query, expected_output, test_id)
self.validation_results.append(result)
if result['passed']:
passed += 1
else:
failed += 1
except Exception as e:
failed += 1
self.validation_results.append({
'test_id': test_id,
'query': query,
'error': str(e),
'passed': False
})
# Generate validation report
report = f"""
VALIDATION COMPLETE
==================
Total Cases: {total_cases}
Passed: {passed}
Failed: {failed}
Success Rate: {(passed/total_cases)*100:.1f}%
DETAILED RESULTS:
"""
for result in self.validation_results:
status = "βœ… PASS" if result['passed'] else "❌ FAIL"
report += f"\n{status} [{result['test_id']}] {result['query'][:50]}..."
if not result['passed'] and 'error' in result:
report += f"\n Error: {result['error']}"
return report
async def _validate_single_case(self, query: str, expected_output: str, test_id: str) -> Dict[str, Any]:
"""Validate a single test case"""
try:
# Send query to Claude with MCP tools
claude_messages = [{"role": "user", "content": query}]
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
# Process tool calls if any
actual_output = ""
for content in response.content:
if content.type == 'text':
actual_output += content.text
elif content.type == 'tool_use':
tool_result = await self.session.call_tool(content.name, content.input)
actual_output += str(tool_result.content)
# Simple validation logic - you may want to customize this
passed = self._validate_output(actual_output, expected_output)
return {
'test_id': test_id,
'query': query,
'expected': expected_output,
'actual': actual_output,
'passed': passed
}
except Exception as e:
return {
'test_id': test_id,
'query': query,
'error': str(e),
'passed': False
}
def _validate_output(self, actual: str, expected: str) -> bool:
"""Basic output validation - customize based on your needs"""
# This is a simple implementation - you may want more sophisticated validation
if not expected:
return True # If no expected output specified, consider it passed
# You can implement more sophisticated matching here
# For now, using simple substring matching
return expected.lower() in actual.lower()
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
if not self.anthropic:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please set your Anthropic API key first."}
], gr.Textbox(value="")
if not self.session:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please connect to an MCP server first."}
], gr.Textbox(value="")
new_messages = loop.run_until_complete(self._process_query(message, history))
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
claude_messages = []
for msg in history:
if isinstance(msg, ChatMessage):
role, content = msg.role, msg.content
else:
role, content = msg.get("role"), msg.get("content")
if role in ["user", "assistant", "system"]:
claude_messages.append({"role": role, "content": content})
claude_messages.append({"role": "user", "content": message})
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
result_messages = []
for content in response.content:
if content.type == 'text':
result_messages.append({
"role": "assistant",
"content": content.text
})
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
result_messages.append({
"role": "assistant",
"content": f"I'll only use the {tool_name} tool to help answer your question.",
"metadata": {
"title": f"Using tool: {tool_name}",
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
"status": "pending",
"id": f"tool_call_{tool_name}"
}
})
result_messages.append({
"role": "assistant",
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
"metadata": {
"parent_id": f"tool_call_{tool_name}",
"id": f"params_{tool_name}",
"title": "Tool Parameters"
}
})
try:
result = await self.session.call_tool(tool_name, tool_args)
if result_messages and "metadata" in result_messages[-2]:
result_messages[-2]["metadata"]["status"] = "done"
result_messages.append({
"role": "assistant",
"content": "Here are the results from the tool:",
"metadata": {
"title": f"Tool Result for {tool_name}",
"status": "done",
"id": f"result_{tool_name}"
}
})
result_content = result.content
if isinstance(result_content, list):
result_content = "\n".join(str(item) for item in result_content)
try:
result_json = json.loads(result_content)
if isinstance(result_json, dict) and "type" in result_json:
if result_json["type"] == "image" and "url" in result_json:
result_messages.append({
"role": "assistant",
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"image_{tool_name}",
"title": "Generated Image"
}
})
else:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
except:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
next_response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
)
if next_response.content and next_response.content[0].type == 'text':
result_messages.append({
"role": "assistant",
"content": next_response.content[0].text
})
except Exception as e:
result_messages.append({
"role": "assistant",
"content": f"Error calling tool {tool_name}: {str(e)}",
"metadata": {
"title": f"Error - {tool_name}",
"status": "error",
"id": f"error_{tool_name}"
}
})
return result_messages
client = MCPClientWrapper()
def gradio_interface():
with gr.Blocks(title="TAAIC Tool Validation") as demo:
gr.Markdown("# TAAIC Tool Validation")
gr.Markdown("Connect your Gradio MCP Tool for validation for the TAAIC challenge.")
# API Key input section
with gr.Row(equal_height=True):
with gr.Column(scale=4):
api_key_input = gr.Textbox(
label="Anthropic API Key",
placeholder="Enter your Anthropic API key (sk-ant-...)",
type="password"
)
with gr.Column(scale=1):
api_key_btn = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
# MCP Server connection section
with gr.Row(equal_height=True):
with gr.Column(scale=4):
server_input = gr.Textbox(
label="MCP Server URL or Script Path",
placeholder="Enter URL (e.g., https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse) or local script path (e.g., weather.py)",
value="https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse"
)
with gr.Column(scale=1):
connect_btn = gr.Button("Connect")
status = gr.Textbox(label="Connection Status", interactive=False)
# Dataset loading section
with gr.Row(equal_height=True):
with gr.Column(scale=3):
dataset_status = gr.Textbox(
label="Dataset Status",
value="Click 'Load Dataset' to load validation cases",
interactive=False
)
with gr.Column(scale=1):
dataset_btn = gr.Button("πŸ“₯ Load Dataset", interactive=True)
dataset_preview = gr.Textbox(
label="Dataset Preview",
visible=False,
interactive=False,
max_lines=10
)
# Validation results
validation_results = gr.Textbox(
label="Validation Results",
visible=False,
interactive=False,
max_lines=20
)
# Event handlers
api_key_btn.click(client.set_api_key, inputs=api_key_input, outputs=api_key_status)
connect_btn.click(client.connect, inputs=server_input, outputs=status)
dataset_btn.click(
client.load_dataset,
outputs=[dataset_status, dataset_btn, dataset_preview]
)
def run_validation():
results = client.validate_tools()
return gr.Textbox(value=results, visible=True)
dataset_btn.click(
lambda: client.validate_tools() if client.dataset else "Please load dataset first.",
outputs=validation_results,
show_progress=True
).then(
lambda: gr.Textbox(visible=True),
outputs=validation_results
)
# msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
# clear_btn.click(lambda: [], None, chatbot)
return demo
if __name__ == "__main__":
interface = gradio_interface()
interface.launch(debug=True)