Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import random | |
import os | |
import yaml | |
import argparse | |
from pathlib import Path | |
import imageio | |
import tempfile | |
if latent_upsampler_instance: | |
latent_upsampler_instance.to(target_inference_device) | |
# --- Helper function for dimension calculation --- | |
MIN_DIM_SLIDER = 256 | |
TARGET_FIXED_SIDE = 768 | |
def calculate_new_dimensions(orig_w, orig_h): | |
""" | |
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]. | |
""" | |
if orig_w == 0 or orig_h == 0: | |
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE) | |
if orig_w >= orig_h: | |
new_h = TARGET_FIXED_SIDE | |
aspect_ratio = orig_w / orig_h | |
new_w_ideal = new_h * aspect_ratio | |
new_w = round(new_w_ideal / 32) * 32 | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
else: | |
new_w = TARGET_FIXED_SIDE | |
aspect_ratio = orig_h / orig_w | |
new_h_ideal = new_w * aspect_ratio | |
new_h = round(new_h_ideal / 32) * 32 | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
return int(new_h), int(new_w) | |
def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted", | |
input_image_filepath=None, input_video_filepath=None, | |
height_ui=512, width_ui=704, mode="text-to-video", | |
duration_ui=2.0, ui_frames_to_use=9, | |
seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True): | |
if randomize_seed: | |
seed_ui = random.randint(0, 2**32 - 1) | |
seed_everething(int(seed_ui)) | |
if ui_guidance_scale is None: | |
ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0) | |
target_frames_ideal = duration_ui * FPS | |
target_frames_rounded = round(target_frames_ideal) | |
if target_frames_rounded < 1: | |
height_padded = ((actual_height - 1) // 32 + 1) * 32 | |
width_padded = ((actual_width - 1) // 32 + 1) * 32 | |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 | |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded) | |
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)] | |
except Exception as e: | |
print(f"Error loading image {input_image_filepath}: {e}") | |
raise RuntimeError(f"Could not load image: {e}") | |
elif mode == "video-to-video" and input_video_filepath: | |
try: | |
call_kwargs["media_items"] = load_media_file( | |
).to(target_inference_device) | |
except Exception as e: | |
print(f"Error loading video {input_video_filepath}: {e}") | |
raise RuntimeError(f"Could not load video: {e}") | |
print(f"Moving models to {target_inference_device} for inference (if not already there)...") | |
result_images_tensor = None | |
if improve_texture_flag: | |
if not active_latent_upsampler: | |
raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.") | |
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler) | |
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
first_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
first_pass_args.pop("num_inference_steps", None) | |
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy() | |
second_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
second_pass_args.pop("num_inference_steps", None) | |
multi_scale_call_kwargs = call_kwargs.copy() | |
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {}) | |
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps") | |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) | |
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale") | |
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale") | |
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list") | |
single_pass_call_kwargs.pop("num_inference_steps", None) | |
single_pass_call_kwargs.pop("first_pass", None) | |
single_pass_call_kwargs.pop("second_pass", None) | |
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images | |
if result_images_tensor is None: | |
raise RuntimeError("Generation failed.") | |
pad_left, pad_right, pad_top, pad_bottom = padding_values | |
slice_h_end = -pad_bottom if pad_bottom > 0 else None | |
] | |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = np.clip(video_np, 0, 1) | |
video_np = (video_np * 255).astype(np.uint8) | |
timestamp = random.randint(10000, 99999) | |
output_video_path = f"output_{timestamp}.mp4" | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
video_writer.append_data(video_np[frame_idx]) | |
if frame_idx % 10 == 0: | |
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}") | |
except Exception as e: | |
print(f"Error saving video with macro_block_size=1: {e}") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
video_writer.append_data(video_np[frame_idx]) | |
if frame_idx % 10 == 0: | |
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)") | |
except Exception as e2: | |
print(f"Fallback video saving error: {e2}") | |
raise RuntimeError(f"Failed to save video: {e2}") | |
return output_video_path, seed_ui | |
def main(): | |
parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line") | |
parser.add_argument("--prompt", required=True, help="Text prompt for video generation") | |
parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", | |
help="Negative prompt") | |
parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], | |
default="text-to-video", help="Generation mode") | |
parser.add_argument("--input-image", help="Input image path for image-to-video mode") | |
parser.add_argument("--input-video", help="Input video path for video-to-video mode") | |
parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)") | |
parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)") | |
parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)") | |
parser.add_argument("--seed", type=int, default=42, help="Random seed") | |
parser.add_argument("--randomize-seed", action="store_true", help="Use random seed") | |
parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation") | |
parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)") | |
parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)") | |
args = parser.parse_args() | |
# Validate parameters | |
if args.mode == "image-to-video" and not args.input_image: | |
print("Error: --input-image is required for image-to-video mode") | |
return | |
if args.mode == "video-to-video" and not args.input_video: | |
print("Error: --input-video is required for video-to-video mode") | |
return | |
# Ensure dimensions are divisible by 32 | |
args.height = ((args.height - 1) // 32 + 1) * 32 | |
args.width = ((args.width - 1) // 32 + 1) * 32 | |
print(f"Starting video generation...") | |
print(f"Prompt: {args.prompt}") | |
print(f"Mode: {args.mode}") | |
print(f"Duration: {args.duration}s") | |
print(f"Resolution: {args.width}x{args.height}") | |
try: | |
output_path, used_seed = generate( | |
prompt=args.prompt, | |
negative_prompt=args.negative_prompt, | |
input_image_filepath=args.input_image, | |
input_video_filepath=args.input_video, | |
height_ui=args.height, | |
width_ui=args.width, | |
mode=args.mode, | |
duration_ui=args.duration, | |
ui_frames_to_use=args.frames_to_use, | |
seed_ui=args.seed, | |
randomize_seed=args.randomize_seed, | |
ui_guidance_scale=args.guidance_scale, | |
improve_texture_flag=not args.no_improve_texture | |
) | |
print(f"\nVideo generation completed!") | |
print(f"Output saved to: {output_path}") | |
print(f"Used seed: {used_seed}") | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
raise | |
if __name__ == "__main__": | |
if os.path.exists(models_dir) and os.path.isdir(models_dir): | |
print(f"Model directory: {Path(models_dir).resolve()}") | |
main() |