dangthr's picture
Update app.py
59a4c9f verified
import torch
import numpy as np
import random
import os
import yaml
import argparse
from pathlib import Path
import imageio
import tempfile
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
# --- Helper function for dimension calculation ---
MIN_DIM_SLIDER = 256
TARGET_FIXED_SIDE = 768
def calculate_new_dimensions(orig_w, orig_h):
"""
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
"""
if orig_w == 0 or orig_h == 0:
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
if orig_w >= orig_h:
new_h = TARGET_FIXED_SIDE
aspect_ratio = orig_w / orig_h
new_w_ideal = new_h * aspect_ratio
new_w = round(new_w_ideal / 32) * 32
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
else:
new_w = TARGET_FIXED_SIDE
aspect_ratio = orig_h / orig_w
new_h_ideal = new_w * aspect_ratio
new_h = round(new_h_ideal / 32) * 32
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
return int(new_h), int(new_w)
def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
input_image_filepath=None, input_video_filepath=None,
height_ui=512, width_ui=704, mode="text-to-video",
duration_ui=2.0, ui_frames_to_use=9,
seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
if ui_guidance_scale is None:
ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
target_frames_ideal = duration_ui * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1:
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
print(f"Error loading image {input_image_filepath}: {e}")
raise RuntimeError(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
).to(target_inference_device)
except Exception as e:
print(f"Error loading video {input_video_filepath}: {e}")
raise RuntimeError(f"Could not load video: {e}")
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
result_images_tensor = None
if improve_texture_flag:
if not active_latent_upsampler:
raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
first_pass_args.pop("num_inference_steps", None)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
second_pass_args.pop("num_inference_steps", None)
multi_scale_call_kwargs = call_kwargs.copy()
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
single_pass_call_kwargs.pop("num_inference_steps", None)
single_pass_call_kwargs.pop("first_pass", None)
single_pass_call_kwargs.pop("second_pass", None)
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise RuntimeError("Generation failed.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
timestamp = random.randint(10000, 99999)
output_video_path = f"output_{timestamp}.mp4"
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
video_writer.append_data(video_np[frame_idx])
if frame_idx % 10 == 0:
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}")
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
video_writer.append_data(video_np[frame_idx])
if frame_idx % 10 == 0:
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)")
except Exception as e2:
print(f"Fallback video saving error: {e2}")
raise RuntimeError(f"Failed to save video: {e2}")
return output_video_path, seed_ui
def main():
parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line")
parser.add_argument("--prompt", required=True, help="Text prompt for video generation")
parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt")
parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"],
default="text-to-video", help="Generation mode")
parser.add_argument("--input-image", help="Input image path for image-to-video mode")
parser.add_argument("--input-video", help="Input video path for video-to-video mode")
parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)")
parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)")
parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--randomize-seed", action="store_true", help="Use random seed")
parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation")
parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)")
parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)")
args = parser.parse_args()
# Validate parameters
if args.mode == "image-to-video" and not args.input_image:
print("Error: --input-image is required for image-to-video mode")
return
if args.mode == "video-to-video" and not args.input_video:
print("Error: --input-video is required for video-to-video mode")
return
# Ensure dimensions are divisible by 32
args.height = ((args.height - 1) // 32 + 1) * 32
args.width = ((args.width - 1) // 32 + 1) * 32
print(f"Starting video generation...")
print(f"Prompt: {args.prompt}")
print(f"Mode: {args.mode}")
print(f"Duration: {args.duration}s")
print(f"Resolution: {args.width}x{args.height}")
try:
output_path, used_seed = generate(
prompt=args.prompt,
negative_prompt=args.negative_prompt,
input_image_filepath=args.input_image,
input_video_filepath=args.input_video,
height_ui=args.height,
width_ui=args.width,
mode=args.mode,
duration_ui=args.duration,
ui_frames_to_use=args.frames_to_use,
seed_ui=args.seed,
randomize_seed=args.randomize_seed,
ui_guidance_scale=args.guidance_scale,
improve_texture_flag=not args.no_improve_texture
)
print(f"\nVideo generation completed!")
print(f"Output saved to: {output_path}")
print(f"Used seed: {used_seed}")
except Exception as e:
print(f"Error during generation: {e}")
raise
if __name__ == "__main__":
if os.path.exists(models_dir) and os.path.isdir(models_dir):
print(f"Model directory: {Path(models_dir).resolve()}")
main()