Spaces:
Sleeping
Sleeping
File size: 33,875 Bytes
4bf5701 8d064dc 0bbf2df b4c92f5 b44d470 3011301 b4c92f5 4bf5701 bda2b5b 0bbf2df 4bf5701 28a74a6 4bf5701 b44d470 4bf5701 b44d470 4bf5701 28a74a6 4bf5701 0bbf2df 4bf5701 b4c92f5 4bf5701 28a74a6 4bf5701 0bbf2df 4bf5701 b4c92f5 4bf5701 ce093f9 0bbf2df 4bf5701 b4c92f5 b2ce320 3011301 b2ce320 bda2b5b b4c92f5 b44d470 b4c92f5 4bf5701 b4c92f5 edd4b9d ce093f9 b4c92f5 4bf5701 b4c92f5 988e855 4bf5701 b4c92f5 0bbf2df b4c92f5 4bf5701 0bbf2df 4bf5701 0bbf2df b4c92f5 a34433b b4c92f5 a34433b b4c92f5 a34433b b4c92f5 a34433b 4bf5701 a34433b 4bf5701 b4c92f5 4bf5701 b4c92f5 4bf5701 bda2b5b 988e855 bda2b5b 988e855 bda2b5b 988e855 4bf5701 b4c92f5 4bf5701 b4c92f5 ce093f9 b4c92f5 28a74a6 b4c92f5 bda2b5b 4bf5701 59185b1 b4c92f5 0bbf2df bda2b5b 0bbf2df 4bf5701 b4c92f5 4bf5701 0bbf2df 4bf5701 b4c92f5 4bf5701 b4c92f5 4bf5701 b4c92f5 3011301 a7f196f 3011301 4bf5701 59185b1 b44d470 b4c92f5 b44d470 59185b1 4bf5701 0bbf2df 4bf5701 b4c92f5 4bf5701 b4c92f5 4bf5701 b4c92f5 bda2b5b b4c92f5 4bf5701 b4c92f5 4bf5701 b4c92f5 4bf5701 edd4b9d 4bf5701 0bbf2df 4bf5701 bda2b5b 4bf5701 b4c92f5 8d064dc b4c92f5 4bf5701 b4c92f5 59185b1 4bf5701 b4c92f5 4bf5701 bda2b5b 59185b1 b4c92f5 4bf5701 b4c92f5 4bf5701 59185b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
import gradio as gr
from pathlib import Path
from pipeline.process import process_texts
from pipeline.visualize import generate_visualizations, generate_word_count_chart
from pipeline.llm_service import LLMService
import logging
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
# Load environment variables from .env file
from theme import tibetan_theme
load_dotenv()
logger = logging.getLogger(__name__)
def main_interface():
with gr.Blocks(
theme=tibetan_theme,
title="Tibetan Text Metrics Web App",
css=tibetan_theme.get_css_string() + ".metric-description, .step-box { padding: 1.5rem !important; }"
) as demo:
gr.Markdown(
"""# Tibetan Text Metrics Web App
<span style='font-size:18px;'>A user-friendly web application for analyzing textual similarities and variations in Tibetan manuscripts, providing a graphical interface to the core functionalities of the [Tibetan Text Metrics (TTM)](https://github.com/daniel-wojahn/tibetan-text-metrics) project. Powered by advanced language models via OpenRouter for in-depth text analysis.</span>
""",
elem_classes="gr-markdown",
)
with gr.Row(elem_id="steps-row"):
with gr.Column(scale=1, elem_classes="step-column"):
with gr.Group(elem_classes="step-box"):
gr.Markdown(
"""
## Step 1: Upload Your Tibetan Text Files
<span style='font-size:16px;'>Upload one or more `.txt` files. Each file should contain Unicode Tibetan text, segmented into chapters/sections if possible using the marker '༈' (<i>sbrul shad</i>).</span>
""",
elem_classes="gr-markdown",
)
file_input = gr.File(
label="Upload Tibetan .txt files",
file_types=[".txt"],
file_count="multiple",
)
gr.Markdown(
"<small>Note: Maximum file size: 10MB per file. For optimal performance, use files under 1MB.</small>",
elem_classes="gr-markdown"
)
with gr.Column(scale=1, elem_classes="step-column"):
with gr.Group(elem_classes="step-box"):
gr.Markdown(
"""## Step 2: Configure and run the analysis
<span style='font-size:16px;'>Choose your analysis options and click the button below to compute metrics and view results. For meaningful analysis, ensure your texts are segmented by chapter or section using the marker '༈' (<i>sbrul shad</i>). The tool will split files based on this marker.</span>
""",
elem_classes="gr-markdown",
)
semantic_toggle_radio = gr.Radio(
label="Compute semantic similarity? (Experimental)",
choices=["Yes", "No"],
value="No",
info="Semantic similarity will be time-consuming. Choose 'No' to speed up analysis if these metrics are not required.",
elem_id="semantic-radio-group",
)
model_dropdown = gr.Dropdown(
choices=[
"sentence-transformers/LaBSE",
"Facebook FastText (Pre-trained)"
],
label="Select Embedding Model",
value="sentence-transformers/LaBSE",
info="Select the embedding model to use for semantic similarity analysis. LaBSE v1.0 or FastText v1.0."
)
with gr.Accordion("Advanced Options", open=False):
batch_size_slider = gr.Slider(
minimum=1,
maximum=64,
value=8,
step=1,
label="Batch Size (for Hugging Face models)",
info="Adjust based on your hardware (VRAM). Lower this if you encounter memory issues."
)
progress_bar_checkbox = gr.Checkbox(
label="Show Embedding Progress Bar",
value=False,
info="Display a progress bar during embedding generation. Useful for large datasets."
)
stopwords_dropdown = gr.Dropdown(
label="Stopword Filtering",
choices=[
"None (No filtering)",
"Standard (Common particles only)",
"Aggressive (All function words)"
],
value="Standard (Common particles only)", # Default
info="Choose how aggressively to filter out common Tibetan particles and function words when calculating similarity. This helps focus on meaningful content words."
)
process_btn = gr.Button(
"Run Analysis", elem_id="run-btn", variant="primary"
)
gr.Markdown(
"""## Results
""",
elem_classes="gr-markdown",
)
# The heatmap_titles and metric_tooltips dictionaries are defined here
# heatmap_titles = { ... }
# metric_tooltips = { ... }
csv_output = gr.File(label="Download CSV Results")
metrics_preview = gr.Dataframe(
label="Similarity Metrics Preview", interactive=False, visible=True
)
# LLM Interpretation components
with gr.Row():
with gr.Column():
gr.Markdown(
"## AI Analysis\n*The AI will analyze your text similarities and provide insights into patterns and relationships.*",
elem_classes="gr-markdown"
)
# Add the interpret button
with gr.Row():
interpret_btn = gr.Button(
"Help Interpret Results",
variant="primary",
elem_id="interpret-btn"
)
# Create a placeholder message with proper formatting and structure
initial_message = """
## Analysis of Tibetan Text Similarity Metrics
<small>*Click the 'Help Interpret Results' button above to generate an AI-powered analysis of your similarity metrics.*</small>
"""
interpretation_output = gr.Markdown(
value=initial_message,
elem_id="llm-analysis"
)
# Heatmap tabs for each metric
heatmap_titles = {
"Jaccard Similarity (%)": "Jaccard Similarity (%): Higher scores (darker) mean more shared unique words.",
"Normalized LCS": "Normalized LCS: Higher scores (darker) mean longer shared sequences of words.",
"Semantic Similarity": "Semantic Similarity (using word embeddings/experimental): Higher scores (darker) mean more similar meanings.",
"Word Counts": "Word Counts: Bar chart showing the number of words in each segment after tokenization.",
}
metric_tooltips = {
"Jaccard Similarity (%)": """
### Jaccard Similarity (%)
This metric quantifies the lexical overlap between two text segments by comparing their sets of *unique* words, optionally filtering out common Tibetan stopwords.
It essentially answers the question: 'Of all the distinct words found across these two segments, what proportion of them are present in both?' It is calculated as `(Number of common unique words) / (Total number of unique words in both texts combined) * 100`.
Jaccard Similarity is insensitive to word order and word frequency; it only cares whether a unique word is present or absent. A higher percentage indicates a greater overlap in the vocabularies used in the two segments.
**Stopword Filtering**: When enabled (via the "Filter Stopwords" checkbox), common Tibetan particles and function words are filtered out before comparison. This helps focus on meaningful content words rather than grammatical elements.
""",
"Normalized LCS": """
### Normalized LCS (Longest Common Subsequence)
This metric measures the length of the longest sequence of words that appears in *both* text segments, maintaining their original relative order.
Importantly, these words do not need to be directly adjacent (contiguous) in either text.
For example, if Text A is '<u>the</u> quick <u>brown</u> fox <u>jumps</u>' and Text B is '<u>the</u> lazy cat and <u>brown</u> dog <u>jumps</u> high', the LCS is 'the brown jumps'.
The length of this common subsequence is then normalized (in this tool, by dividing by the length of the longer of the two segments) to provide a score, which is then presented as a percentage.
A higher Normalized LCS score suggests more significant shared phrasing, direct textual borrowing, or strong structural parallelism, as it reflects similarities in how ideas are ordered and expressed sequentially.
**No Stopword Filtering.** Unlike metrics such as Jaccard Similarity or TF-IDF Cosine Similarity (which typically filter out common stopwords to focus on content-bearing words), the LCS calculation in this tool intentionally uses the raw, unfiltered sequence of tokens from your texts. This design choice allows LCS to capture structural similarities and the flow of language, including the use of particles and common words that contribute to sentence construction and narrative sequence. By not removing stopwords, LCS can reveal similarities in phrasing and textual structure that might otherwise be obscured, making it a valuable complement to metrics that focus purely on lexical overlap of keywords.
**Note on Interpretation**: It is possible for Normalized LCS to be higher than Jaccard Similarity. This often happens when texts share a substantial 'narrative backbone' or common ordered phrases (leading to a high LCS), even if they use varied surrounding vocabulary or introduce many unique words not part of these core sequences (which would lower the Jaccard score). LCS highlights this sequential, structural similarity, while Jaccard focuses on the overall shared vocabulary regardless of its arrangement.
""",
"Semantic Similarity": """
### Semantic Similarity
This metric measures the similarity in meaning between text segments by converting them into high-dimensional vectors (embeddings) and calculating the cosine similarity between them. A score closer to 1 indicates a higher degree of semantic overlap. You can choose from two types of models:
**1. Hugging Face Transformer Models (e.g., LaBSE, E5-base-v2)**:
- **Context-Aware**: These are state-of-the-art models that understand the context in which words appear, allowing them to capture nuanced meanings, relationships, and idiomatic expressions.
- **Sentence-Level Embeddings**: They are specifically designed to create a single, high-quality vector representation for an entire text segment.
- **Recommended for General Use**: These models often provide superior performance for capturing the overall thematic and semantic similarity between passages.
**2. FastText Model**:
- **Word-Based**: This model generates embeddings for individual words and then averages them (using TF-IDF weighting) to create a representation for the entire segment.
- **Strong for Lexical Analysis**: It excels at understanding the meaning of individual words, including rare or specialized Tibetan vocabulary, as it can generate vectors for out-of-vocabulary words from their sub-word units.
- **Optimized for Tibetan**: Uses `botok` tokenization and TF-IDF weighting to focus on the most significant words in a segment.
**Stopword Filtering**: When enabled, common Tibetan particles and function words are filtered out before computing embeddings. This helps focus on meaningful content words and is recommended for most analyses.
""",
"TF-IDF Cosine Sim": """
### TF-IDF Cosine Similarity
This metric calculates Term Frequency-Inverse Document Frequency (TF-IDF) scores for each word in each text segment, optionally filtering out common Tibetan stopwords.
TF-IDF gives higher weight to words that are frequent within a particular segment but relatively rare across the entire collection of segments. This helps identify terms that are characteristic or discriminative for a segment. When stopword filtering is enabled, the TF-IDF scores better reflect genuinely significant terms by excluding common particles and function words.
Each segment is represented as a vector of these TF-IDF scores, and the cosine similarity is computed between these vectors. A score closer to 1 indicates that the two segments share more important, distinguishing terms, suggesting they cover similar specific topics or themes.
**Stopword Filtering**: When enabled (via the "Filter Stopwords" checkbox), common Tibetan particles and function words are filtered out. This can be toggled on/off to compare results with and without stopwords.
""",
}
heatmap_tabs = {}
gr.Markdown("## Detailed Metric Analysis", elem_classes="gr-markdown")
with gr.Tabs(elem_id="heatmap-tab-group"):
# Structural Analysis Tab
with gr.Tab("Structural Analysis"):
gr.Markdown("""
### Structural Analysis for Tibetan Legal Manuscripts
This tab provides detailed chapter-level structural analysis for Tibetan legal manuscript comparison.
**Features:**
- **Differential Highlighting**: Highlights significant textual variations
- **Per-Chapter Analysis**: Detailed comparison for each chapter pair
**Usage:**
Results appear automatically when texts are processed. Use the export buttons to save detailed reports for philological analysis.
""")
# Structural analysis outputs
structural_heatmap = gr.Plot(label="Structural Changes Summary", show_label=False, elem_classes="structural-heatmap")
structural_report = gr.HTML(label="Differential Analysis Report")
structural_export = gr.File(label="Export Structural Analysis Report", file_types=[".html", ".md", ".json"])
# Process metrics excluding TF-IDF
metrics_to_display = {k: v for k, v in heatmap_titles.items() if k != "TF-IDF Cosine Sim"}
for metric_key, descriptive_title in metrics_to_display.items():
with gr.Tab(metric_key):
# Set CSS class based on metric type
if metric_key == "Jaccard Similarity (%)":
css_class = "metric-info-accordion jaccard-info"
accordion_title = "Understanding Vocabulary Overlap"
elif metric_key == "Normalized LCS":
css_class = "metric-info-accordion lcs-info"
accordion_title = "Understanding Sequence Patterns"
elif metric_key == "Semantic Similarity":
css_class = "metric-info-accordion semantic-info"
accordion_title = "Understanding Meaning Similarity"
elif metric_key == "Word Counts":
css_class = "metric-info-accordion wordcount-info"
accordion_title = "Understanding Text Length"
else:
css_class = "metric-info-accordion"
accordion_title = f"About {metric_key}"
# Create the accordion with appropriate content
with gr.Accordion(accordion_title, open=False, elem_classes=css_class):
if metric_key == "Word Counts":
gr.Markdown("""
### Word Counts per Segment
This chart displays the number of words in each segment of your texts after tokenization.
""")
elif metric_key in metric_tooltips:
gr.Markdown(value=metric_tooltips[metric_key], elem_classes="metric-description")
else:
gr.Markdown(value=f"### {metric_key}\nDescription not found.")
# Add the appropriate plot
if metric_key == "Word Counts":
word_count_plot = gr.Plot(label="Word Counts per Segment", show_label=False, scale=1, elem_classes="metric-description")
else:
heatmap_tabs[metric_key] = gr.Plot(label=f"Heatmap: {metric_key}", show_label=False, elem_classes="metric-heatmap")
# The outputs in process_btn.click should use the short metric names as keys for heatmap_tabs
# e.g., heatmap_tabs["Jaccard Similarity (%)"]
# Ensure the plot is part of the layout. This assumes plots are displayed sequentially
# within the current gr.Tab("Results"). If they are in specific TabItems, this needs adjustment.
# For now, this modification focuses on creating the plot object and making it an output.
# The visual placement depends on how Gradio renders children of gr.Tab or if there's another container.
warning_box = gr.Markdown(visible=False)
def run_pipeline(files, enable_semantic, model_name, stopwords_option, batch_size, show_progress, progress=gr.Progress()):
"""Run the text analysis pipeline on the uploaded files.
Args:
files: List of uploaded files
enable_semantic: Whether to compute semantic similarity
model_name: Name of the embedding model to use
stopwords_option: Stopword filtering level (None, Standard, or Aggressive)
progress: Gradio progress indicator
Returns:
Tuple of (metrics_df, heatmap_jaccard, heatmap_lcs, heatmap_semantic, heatmap_tfidf, word_count_fig)
"""
# Initialize progress tracking
try:
progress_tracker = gr.Progress()
except Exception as e:
logger.warning(f"Could not initialize progress tracker: {e}")
progress_tracker = None
# Initialize all return values to ensure defined paths for all outputs
csv_path_res = None
metrics_preview_df_res = None # Can be a DataFrame or a string message
word_count_fig_res = None
jaccard_heatmap_res = None
lcs_heatmap_res = None
semantic_heatmap_res = None
warning_update_res = gr.update(value="", visible=False) # Default: no warning
structural_heatmap_res = None
structural_report_res = None
structural_export_res = None
"""
Processes uploaded files, computes metrics, generates visualizations, and prepares outputs for the UI.
Args:
files (List[FileStorage]): A list of file objects uploaded by the user.
Returns:
tuple: A tuple containing the following elements in order:
- csv_path (str | None): Path to the generated CSV results file, or None on error.
- metrics_preview_df (pd.DataFrame | str | None): DataFrame for metrics preview, error string, or None.
- word_count_fig (matplotlib.figure.Figure | None): Plot of word counts, or None on error.
- jaccard_heatmap (matplotlib.figure.Figure | None): Jaccard similarity heatmap, or None.
- lcs_heatmap (matplotlib.figure.Figure | None): LCS heatmap, or None.
- semantic_heatmap (matplotlib.figure.Figure | None): Semantic similarity heatmap, or None.
- warning_update (gr.update): Gradio update for the warning box.
"""
# Check if files are provided
if not files:
return (
None,
"Please upload files to analyze.",
None, # word_count_plot
None, # jaccard_heatmap
None, # lcs_heatmap
None, # semantic_heatmap
None, # tfidf_heatmap
gr.update(value="Please upload files.", visible=True),
)
# Check file size limits (10MB per file)
for file in files:
file_size_mb = Path(file.name).stat().st_size / (1024 * 1024)
if file_size_mb > 10:
return (
None,
f"File '{Path(file.name).name}' exceeds the 10MB size limit (size: {file_size_mb:.2f}MB).",
None, None, None, None, None,
gr.update(value=f"Error: File '{Path(file.name).name}' exceeds the 10MB size limit.", visible=True),
)
try:
if progress_tracker is not None:
try:
progress_tracker(0.1, desc="Preparing files...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
# Get filenames and read file contents
filenames = [
Path(file.name).name for file in files
] # Use Path().name to get just the filename
text_data = {}
# Read files with progress updates
for i, file in enumerate(files):
file_path = Path(file.name)
filename = file_path.name
if progress_tracker is not None:
try:
progress_tracker(0.1 + (0.1 * (i / len(files))), desc=f"Reading file: {filename}")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
try:
text_data[filename] = file_path.read_text(encoding="utf-8-sig")
except UnicodeDecodeError:
# Try with different encodings if UTF-8 fails
try:
text_data[filename] = file_path.read_text(encoding="utf-16")
except UnicodeDecodeError:
return (
None,
f"Error: Could not decode file '{filename}'. Please ensure it contains valid Tibetan text in UTF-8 or UTF-16 encoding.",
None, None, None, None, None,
gr.update(value=f"Error: Could not decode file '{filename}'.", visible=True),
)
# Configure semantic similarity
enable_semantic_bool = enable_semantic == "Yes"
if progress_tracker is not None:
try:
progress_tracker(0.2, desc="Loading model..." if enable_semantic_bool else "Processing text...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
# Process texts with selected model
# Convert stopword option to appropriate parameters
use_stopwords = stopwords_option != "None (No filtering)"
use_lite_stopwords = stopwords_option == "Standard (Common particles only)"
# Map UI model name to internal model ID
# The UI model_name is "Facebook FastText (Pre-trained)"
# This mapping ensures the backend receives the correct identifier.
if model_name == "Facebook FastText (Pre-trained)":
internal_model_id = "facebook-fasttext-pretrained"
else:
# For Hugging Face models, the UI value is the correct model ID
internal_model_id = model_name
df_results, word_counts_df_data, warning_raw = process_texts(
text_data,
filenames,
enable_semantic=enable_semantic_bool,
model_name=internal_model_id,
use_stopwords=use_stopwords,
use_lite_stopwords=use_lite_stopwords,
progress_callback=progress_tracker,
batch_size=batch_size,
show_progress_bar=show_progress
)
if df_results.empty:
warning_md = f"**⚠️ Warning:** {warning_raw}" if warning_raw else ""
warning_message = (
"No common chapters found or results are empty. " + warning_md
)
metrics_preview_df_res = warning_message
warning_update_res = gr.update(value=warning_message, visible=True)
# Results for this case are set, then return
else:
# Generate visualizations
if progress_tracker is not None:
try:
progress_tracker(0.8, desc="Generating visualizations...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
# heatmap_titles is already defined in the outer scope of main_interface
heatmaps_data = generate_visualizations(
df_results, descriptive_titles=heatmap_titles
)
# Generate word count chart
if progress_tracker is not None:
try:
progress_tracker(0.9, desc="Creating word count chart...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
word_count_fig_res = generate_word_count_chart(word_counts_df_data)
# Generate structural analysis
if progress_tracker is not None:
try:
progress_tracker(0.92, desc="Generating structural analysis...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
# Create structural analysis
from pipeline.differential_viz import create_differential_heatmap, create_change_detection_report
# Create structural heatmap
try:
structural_heatmap_res = create_differential_heatmap(
text_data, "all_chapters", df_results
)
except Exception as e:
logger.warning(f"Could not generate structural heatmap: {e}")
structural_heatmap_res = None
# Create structural report
try:
structural_report_res = create_change_detection_report(
text_data, "all_chapters", "html"
)
except Exception as e:
logger.warning(f"Could not generate structural report: {e}")
structural_report_res = "<p>Could not generate structural analysis report.</p>"
# Save structural analysis report
try:
report_path = "structural_analysis_report.html"
with open(report_path, 'w', encoding='utf-8') as f:
f.write(structural_report_res if isinstance(structural_report_res, str) else "")
structural_export_res = report_path
except Exception as e:
logger.warning(f"Could not save structural report: {e}")
structural_export_res = None
# Save results to CSV
if progress_tracker is not None:
try:
progress_tracker(0.95, desc="Saving results...")
except Exception as e:
logger.warning(f"Progress update error (non-critical): {e}")
csv_path_res = "results.csv"
df_results.to_csv(csv_path_res, index=False)
# Prepare final output
warning_md = f"**⚠️ Warning:** {warning_raw}" if warning_raw else ""
metrics_preview_df_res = df_results.head(10)
jaccard_heatmap_res = heatmaps_data.get("Jaccard Similarity (%)")
lcs_heatmap_res = heatmaps_data.get("Normalized LCS")
semantic_heatmap_res = heatmaps_data.get(
"Semantic Similarity"
)
_ = heatmaps_data.get("TF-IDF Cosine Sim") # TF-IDF removed
warning_update_res = gr.update(
visible=bool(warning_raw), value=warning_md
)
except Exception as e:
logger.error(f"Error in run_pipeline: {e}", exc_info=True)
# metrics_preview_df_res and warning_update_res are set here.
# Other plot/file path variables will retain their initial 'None' values set at function start.
metrics_preview_df_res = f"Error: {str(e)}"
warning_update_res = gr.update(value=f"Error: {str(e)}", visible=True)
return (
csv_path_res,
metrics_preview_df_res,
word_count_fig_res,
jaccard_heatmap_res,
lcs_heatmap_res,
semantic_heatmap_res,
warning_update_res,
structural_heatmap_res,
structural_report_res,
structural_export_res
)
# Function to interpret results using LLM
def interpret_results(csv_path, progress=gr.Progress()):
try:
if not csv_path or not Path(csv_path).exists():
return "Please run the analysis first to generate results."
# Read the CSV file
df_results = pd.read_csv(csv_path)
# Show detailed progress messages with percentages
progress(0, desc="Preparing data for analysis...")
progress(0.1, desc="Analyzing similarity patterns...")
progress(0.2, desc="Connecting to Mistral 7B via OpenRouter...")
# Get interpretation from LLM (using OpenRouter API)
progress(0.3, desc="Generating scholarly interpretation (this may take 20-40 seconds)...")
llm_service = LLMService()
interpretation = llm_service.analyze_similarity(df_results)
# Simulate completion steps
progress(0.9, desc="Formatting results...")
progress(0.95, desc="Applying scholarly formatting...")
# Completed
progress(1.0, desc="Analysis complete!")
# Add a timestamp to the interpretation
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
interpretation = f"{interpretation}\n\n<small>Analysis generated on {timestamp}</small>"
return interpretation
except Exception as e:
logger.error(f"Error in interpret_results: {e}", exc_info=True)
return f"Error interpreting results: {str(e)}"
process_btn.click(
fn=run_pipeline,
inputs=[file_input, semantic_toggle_radio, model_dropdown, stopwords_dropdown, batch_size_slider, progress_bar_checkbox],
outputs=[
csv_output,
metrics_preview,
word_count_plot,
heatmap_tabs["Jaccard Similarity (%)"],
heatmap_tabs["Normalized LCS"],
heatmap_tabs["Semantic Similarity"],
warning_box,
structural_heatmap,
structural_report,
structural_export,
]
)
# Connect the interpret button
interpret_btn.click(
fn=interpret_results,
inputs=[csv_output],
outputs=interpretation_output
)
return demo
if __name__ == "__main__":
demo = main_interface()
demo.launch() |